ME-RTR
Router Control

Owner’s Manual
(for Version 3.1 or higher: includes AGS & BMK info)
Disclaimer of Liability
The use of this manual and the conditions or methods of installation, operation, use, and maintenance of the ME-RTR are beyond the control of Magnum Energy, Inc. Therefore, this company does not assume responsibility and expressly disclaims liability for loss, damage or expense, whether direct, indirect, consequential or incidental, arising out of or in any way connected with such installation, operation, use, or maintenance.
Note as well that while every precaution has been taken to ensure the accuracy of the contents of this manual, the specifications and product functionality may change without notice. Magnum Energy, Inc. assumes no responsibility for errors or omissions.

Restrictions on Use
The ME-RTR may only be used in life-support devices or systems with the express written approval of Magnum Energy. Failure of the ME-RTR can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. If the ME-RTR fails, it is reasonable to assume that the health of the user or other persons may be endangered.

Copyright Notice
Copyright © 2014 by Magnum Energy, Inc. All rights reserved. Permission to copy, distribute, and/or modify this document is prohibited without express written permission from Magnum Energy, Inc.

Document Information
Description – ME-RTR Owner’s Manual
Part Number and Revision – 64-0020 Rev C
Date Published – June 2014
This manual is printed without color for cost savings. However, this entire manual is available for download under the Document Library tab at http://magnumenergy.com with many of the figures available in color.

Contact Information
Magnum Energy, Inc.
2211 West Casino Rd.
Everett, WA 98204
Phone: 425-353-8833
Fax: 425-353-8390
Web: http://magnumenergy.com

Statement of Appreciation
From all of us at Magnum Energy:
Thank you for purchasing this ME-RTR router.
We understand that you have many purchasing options in the marketplace, and are pleased that you have decided on a Magnum Energy product. This ME-RTR router was proudly assembled and tested in the United States in our Everett, Washington, facility.
At Magnum we are committed to providing you with quality products and services, and hope that your experience with us is pleasant and professional.

Magnum Energy® is a registered trademark of Magnum Energy, Inc.
Important Product Safety Instructions
This manual contains safety instructions that must be followed during the installation and operation of this product. Read all instructions and safety information contained in this manual before installing or using this product.

Safety Symbols
To reduce the risk of electrical shock, fire, or other safety hazard, the following safety symbols have been placed throughout this manual to indicate dangerous and important safety instructions.

⚠️ **WARNING:** Indicates that failure to take a specified action could result in physical harm to the user.

⚠️ **CAUTION:** Indicates that failure to take a specified action could result in damage to the equipment.

ℹ️ **Info:** Indicates information that emphasizes or supplements important points of the main text.

✔️ **Remedy:** Provides possible solutions for related issues.

Product Safety Alerts
All electrical work must be performed in accordance with local, state, and federal electrical codes.

⚠️ **WARNINGS:**
- All electrical work must be performed in accordance with local, state and federal electric codes.
- This product is designed for indoor/compartment installation. It must not be exposed to rain, snow, moisture, or liquids of any type.
- Use insulated tools to reduce the chance of electrical shock or accidental short circuits.
- Remove all jewelry such as rings, watches, bracelets, etc., when installing or performing maintenance on the inverter.
- Always disconnect the batteries or energy source prior to installing or performing maintenance on the inverter. Live power may be present at more than one point since an inverter utilizes both batteries and AC. Turning off the inverter may not reduce this risk on some Magnum inverters. As long as AC power is connected, it will pass thru the inverter regardless of the power switch on the inverter or the ON/OFF INVERTER button on the router.
Table of Contents

1.0 Introduction

2.0 Installation

2.1 Pre-Installation ... 3
2.1.1 Inverter Requirements 3
2.1.2 Installation Guidelines 3
2.1.3 Unpacking and Inspection 3
2.1.4 Tools Required .. 3
2.2 Installation Overview .. 4
2.3 Router Dimensions .. 5
2.4 Communications Cables – Provided 6
2.4.1 Network Cable ... 6
2.5 Communications Cable Routing 7
2.6 Mounting the Router on a Wall 8
2.7 Connecting the Communication Cables 8
2.7.1 Connecting the Remote/Network Cables 9
2.7.2 Connecting the Parallel Stack Cables 10
2.8 Installing the Router’s Front Cover 10
2.9 Wiring the Auxiliary (Aux) Relay 11

3.0 Setup

3.1 Power-up Routine .. 12
3.2 Navigating the Router .. 12
3.3 Router Buttons and Menu Items 13
3.3.1 PORT Button and Menus 13
3.3.2 CTRL (Control) Button and Menus 14
3.3.3 METER Button and Menus 18
3.3.3.1 Additional METER Menus for Port-connected Inverters ... 22
3.3.4 SETUP Button and Menus 23
3.3.4.1 Accessory Setup .. 41
3.3.4.2 Stacking Fault Messages 70
3.3.4.3 Internal Fault Messages 71
3.3.5 TECH Button and Menus 42

4.0 ME-RTR Menu Maps

5.0 Operation

5.1 Front Panel ... 53
5.1.1 LED Indicators ... 53
5.1.2 LCD Display .. 53
5.1.3 ON/OFF Buttons .. 54
5.1.4 Menu Buttons ... 54
5.1.5 Rotary SELECT Knob 54
5.1.6 Aux Relay LED Indicator 54
5.2 Operating the Inverter/Charger 55
5.2.1 Inverter Mode ... 55
5.2.2 Charger Mode ... 55
5.3 System Status Messages 55
5.3.1 Inverter Mode Status Messages 56
5.3.2 Charger Mode Status Messages 57
5.3.3 Secondary Scrolling Status Messages 62
5.3.4 Fault Mode Messages 64
5.3.4.1 System Fault Messages 64
5.3.4.2 Stacking Fault Messages 70
5.3.4.3 Internal Fault Messages 71
5.3.5 LED Indicator Guide 72
Table of Contents (Cont.)

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0 Troubleshooting</td>
<td>73</td>
</tr>
<tr>
<td>6.1 Troubleshooting Tips</td>
<td>74</td>
</tr>
<tr>
<td>6.1.1 Inverter Problems</td>
<td>74</td>
</tr>
<tr>
<td>6.1.2 Charger Problems</td>
<td>74</td>
</tr>
<tr>
<td>6.2 Performing an Inverter Reset</td>
<td>75</td>
</tr>
<tr>
<td>6.3 Powering Down the Inverter</td>
<td>75</td>
</tr>
<tr>
<td>7.0 Using an AGS Module</td>
<td>76</td>
</tr>
<tr>
<td>7.0.1 Software Differences Between AGS Versions</td>
<td>76</td>
</tr>
<tr>
<td>7.1 ME-AGS-N Setup (with the ME-RTR)</td>
<td>78</td>
</tr>
<tr>
<td>7.1.1 ME-AGS-N Functional Tests using the ME-RTR</td>
<td>90</td>
</tr>
<tr>
<td>7.1.1.1 Determining AGS Status</td>
<td>90</td>
</tr>
<tr>
<td>7.1.1.2 Starting the Generator from the Router</td>
<td>90</td>
</tr>
<tr>
<td>7.2 ME-AGS-N Operation/Monitoring (with the ME-RTR)</td>
<td>91</td>
</tr>
<tr>
<td>7.2.1 Controlling the AGS using the ME-RTR</td>
<td>91</td>
</tr>
<tr>
<td>7.2.2 Enabling the ME-AGS-N</td>
<td>92</td>
</tr>
<tr>
<td>7.2.3 Monitoring the AGS using the ME-RTR</td>
<td>92</td>
</tr>
<tr>
<td>7.2.3.1 ME-RTR Router’s AGS METER Button</td>
<td>92</td>
</tr>
<tr>
<td>7.2.4 Starting and Stopping the Generator</td>
<td>95</td>
</tr>
<tr>
<td>7.2.5 ME-RTR Router’s AGS Menu Maps</td>
<td>96</td>
</tr>
<tr>
<td>7.2.6 ME-AGS-N Router Status Messages</td>
<td>99</td>
</tr>
<tr>
<td>7.2.6.1 AGS Router Operational Statuses</td>
<td>99</td>
</tr>
<tr>
<td>7.2.6.2 AGS Router Start Statuses</td>
<td>100</td>
</tr>
<tr>
<td>7.2.6.3 AGS Router Fault Statuses</td>
<td>100</td>
</tr>
<tr>
<td>7.3 ME-AGS-N Router Troubleshooting (with the ME-RTR)</td>
<td>102</td>
</tr>
<tr>
<td>7.3.1 AGS Fault Message Screens for the Router</td>
<td>102</td>
</tr>
<tr>
<td>7.3.2 Resolving AGS Faults using your Router</td>
<td>102</td>
</tr>
<tr>
<td>7.3.2.1 How to Clear AGS Faults</td>
<td>104</td>
</tr>
<tr>
<td>8.0 Using a BMK</td>
<td>105</td>
</tr>
<tr>
<td>8.1 ME-BMK Setup (with the ME-RTR)</td>
<td>105</td>
</tr>
<tr>
<td>8.1.1 Adjusting the Charge Efficiency Setting</td>
<td>105</td>
</tr>
<tr>
<td>8.2 ME-BMK Operation/Monitoring (with the ME-RTR)</td>
<td>107</td>
</tr>
<tr>
<td>8.2.1 How does the ME-BMK Battery Monitor Operate?</td>
<td>107</td>
</tr>
<tr>
<td>8.2.2 BMK METER Menu Items (with ME-RTR)</td>
<td>108</td>
</tr>
<tr>
<td>8.2.3 ME-RTR Router’s BMK Menu Maps</td>
<td>109</td>
</tr>
<tr>
<td>8.2.4 BMK Status Messages (with the ME-RTR)</td>
<td>111</td>
</tr>
<tr>
<td>8.2.4.1 BMK Router Operational Statuses</td>
<td>111</td>
</tr>
<tr>
<td>8.2.4.2 BMK Router Fault Statuses</td>
<td>111</td>
</tr>
<tr>
<td>8.3 ME-BMK Troubleshooting (with the ME-RTR)</td>
<td>112</td>
</tr>
<tr>
<td>8.3.1 BMK Fault Message Screens for a Magnum Router</td>
<td>112</td>
</tr>
<tr>
<td>8.3.2 Resolving BMK Faults using the Router</td>
<td>112</td>
</tr>
<tr>
<td>9.0 Attaching a Remote Control</td>
<td>113</td>
</tr>
<tr>
<td>Appendix A – Router Display Abbreviations</td>
<td>114</td>
</tr>
<tr>
<td>Appendix B – Router Feature to Inverter Compatibility</td>
<td>117</td>
</tr>
<tr>
<td>Appendix C – Using the Router with Non-stacked Inverters</td>
<td>121</td>
</tr>
<tr>
<td>C-1 Using the Router to Control Multiple Unconnected Inverters</td>
<td>121</td>
</tr>
<tr>
<td>Appendix D – Using the ME-RTR in an AC Coupled Application</td>
<td>122</td>
</tr>
<tr>
<td>D-1 What is an AC Coupled System</td>
<td>122</td>
</tr>
<tr>
<td>D-2 Configure the Router to use in an AC Coupled System</td>
<td>122</td>
</tr>
<tr>
<td>Appendix E – Warranty and Service Info</td>
<td>123</td>
</tr>
<tr>
<td>E-1 Limited Warranty</td>
<td>123</td>
</tr>
<tr>
<td>E-2 How to Receive Repair Service</td>
<td>123</td>
</tr>
<tr>
<td>Index</td>
<td>124</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1-1, Front Panel Features .. 1
Figure 1-2, Router Features (front cover removed) ... 2
Figure 2-1, System Overview .. 4
Figure 2-2, Router Dimensions (with Front Cover) ... 5
Figure 2-3, Router Mounting Holes and Cutout Sections (back) 5
Figure 2-4, Remote (RJ14) Communication Cable ... 6
Figure 2-5, Parallel Stack (RJ45) Communication Cable .. 6
Figure 2-6, Concealed Mounted Remote/Network Cables .. 7
Figure 2-7, Surface Mounted Remote/Network Cables .. 7
Figure 2-8, Router Front Cover’s Cable Connection Cutouts ... 7
Figure 2-9, Mounting the Router to a Wall .. 8
Figure 2-10, Connecting the Parallel Stack and Remote Cables to an Inverter 9
Figure 2-11, Connecting the Parallel Stack Cables to the Router 10
Figure 2-12, Installing the Router’s Front Cover ... 10
Figure 2-13, Wiring the Auxiliary Relay ... 11
Figure 3-1, System Home Screen .. 12
Figure 3-2, Up and Down Arrows for Hidden Lines ... 12
Figure 3-3, PORT Button ... 13
Figure 3-4, CTRL (Control) Button and Menus ... 14
Figure 3-5, METER Button and Menus ... 18
Figure 3-6, Current Flow – Inverter Mode .. 21
Figure 3-7, Current Flow – Standby Mode .. 21
Figure 3-8, Current Flow – Load Support Mode .. 21
Figure 3-9, ALL Ports vs Port-specific METER Menus ... 22
Figure 3-10, Accessing Port-specific METER Menus .. 22
Figure 3-11, SETUP Button .. 23
Figure 3-12, CV Charge Done Time/Amps Charge Stages .. 34
Figure 3-13, Hold CV Charge Volts CC/CV Charge Stages ... 35
Figure 3-14, Final Charge Stage – Multi-Stage .. 40
Figure 3-15, Final Charge Stage – Float ... 40
Figure 3-16, Final Charge Stage – Silent ... 40
Figure 3-17, TECH Button ... 42
Figure 3-18, Port-Specific TECH Menus .. 42
Figure 3-19, Inverter-Specific TECH Menus (first and second screens) 43
Figure 3-20, AGS Fault History .. 44
Figure 4-1, PORT/CTRL Button Menu Maps ... 47
Figure 4-2, METER Button (ALL Ports & Port-specific) Menu Map 48
Figure 4-3, SETUP Button (System and Inverter Setup – ALL Ports) Menu Map........ 49
Figure 4-4, SETUP Button (Charger Setup – ALL Ports) Menu Map 50
Figure 4-5, TECH Button (ALL Ports) Menu Map .. 51
Figure 4-6, Legend Key for Menu Maps .. 52
Figure 5-1, ME-RTR Front Panel Controls and Indicators ... 53
Figure 5-2, Aux Relay LED ... 54
Figure 5-3.1, SYSTEM Screen Status Messages .. 56
Figure 5-3.2, Individual PORT Screen Status Messages ... 56
Figure 5-3.3, All PORTs Screen Status Messages .. 56
Figure 5-4, Empty ... 56
Figure 5-5, Inverting Mode ... 56
Figure 5-6, Inverter Standby Mode .. 57
Figure 5-7, Off Mode .. 57
Figure 5-8, Searching Mode ... 57
List of Figures (Cont.)

Figure 8-3, Ending Battery Voltage Versus Time .. 107
Figure 8-4, BMK SETUP Menu Maps .. 109
Figure 8-5, BMK METER Menu Maps (ALL Ports) .. 110
Figure 8-6, BMK METER Menu Map (Port-specific) ... 110
Figure 8-7, ME-BMK Fault Message – Router Screens ... 112
Figure 9-1, Accessing the RC Setup Menu .. 113

List of Tables

Table 3-1, Battery Type to Charge Voltages (Fixed Voltage) ... 32
Table 3-2, Battery Amp/Hrs Capacity to Suggested Absorb Time 36
Table 3-3, Inverter/Charger Default Settings on ME-RTR ... 46
Table 5-1, LED Indicator Guide .. 72
Table 6-1, Router Troubleshooting Guide .. 73
Table 7-1, Software Differences Between AGS Versions ... 77
Table 7-2, ME-RTR Autostart/Autostop Matrix ... 78
Table 7-3, AGS Router Operational Statuses ... 99
Table 7-4, AGS Router Start Statuses ... 100
Table 7-5, AGS Router Fault Statuses ... 100
Table 7-6, AGS Default Settings on ME-RTR ... 101
Table 8-1, BMK Router Operational Statuses ... 111
Table 8-2, BMK Router Fault Statuses .. 111
Table A-1, Abbreviations on Router Display .. 114
Table B-1, ME-RTR (Version 3.1) Compatibility Matrix .. 117
1.0 Introduction

The ME-RTR (or “router”) has many of the same features as the ME-ARC50 advanced remote control, with the added functionality required to parallel Magnum MS-PAE or MS-PE inverter/chargers. The router is designed to easily and quickly connect multiple inverter/chargers in parallel without the need to program each inverter. The router can accommodate up to: four MS-PAE or MS-PE inverter/chargers in parallel, two AGS modules, six BMKs, and one remote control.

Info: This manual is for the ME-RTR with version 3.1 or higher; see the TECH: 02 Port Vers section on page 43 for information on how to determine your version level.

Figure 1-1, Front Panel Features

The ME-RTR is equipped with the following features:

- **Status LEDs (x4)** – The at-a-glance LEDs provide the inverter/charger status in a straightforward way.
- **LCD Display** – The LCD display is a 20 x 4 line (80 characters total) alphanumeric display used for setting up the inverter/charger operation, as well as viewing current status or fault messages.
- **ON/OFF Buttons (x2)** – The ON/OFF buttons allow all the connected inverters or chargers to be quickly enabled or disabled.

Info: The router’s ON/OFF INVERTER and ON/OFF CHARGER buttons function normally when a ME-ARC is connected through the router in a parallel system.

- **Rotary SELECT Knob** – The rotary encoder knob is similar to a car dash radio knob and is used to quickly scroll through Ports 1-6, or to select various menu items and settings. Pressing this rotary knob allows you to select a menu item or to save a setting, once it is displayed on the LCD.
- **Comm LEDs (x6)** – The at-a-glance LEDs provide the connection statuses of the communication ports.
- **Front Cover** – Removable front frame cover, allows access to the cable connections and mounting holes.
Introduction

- **Menu Buttons (x5)** – Allow the inverter or charger to be configured to your specific system preferences. These buttons also allow simple access to menu items that can help with monitoring and troubleshooting your inverter/charger system.

 PORT Button – This button accesses the six communication and accessory ports to display information on the connected devices.

 CTRL Button – This button is used to select inverter, charger, and AGS functions previously set up using the SETUP button.

 METER Button – This button is used to access ‘read only’ DC, AC, Timer, AGS, and BMK meters.

 SETUP Button – This button is used to access the setup menus for the inverter, charger, AGS, and BMK. The SETUP button may be password protected to keep unauthorized users from accessing the SETUP menus.

 TECH Button – This button is used to access technical information, fault history, and to set a password for the SETUP button.

- **Auxiliary (Aux) Relay** – The ME-RTR provides an Auxiliary Relay (Item G below) that can be programmed to work either as a voltage-controlled relay (stays opened or closed based on VDC, and activates either as an active high or active low type relay with an adjustable time delay), a SOC-controlled relay (stays opened or closed based on the battery’s state of charge*), or used as an inverter fault detection relay (opens if an inverter fault occurs). See Section 2.9 for more information on this relay, as well as how to wire and set up the Aux Relay (using CTRL button’s 04 RTR Aux Relay menu).

 * Requires the optional ME-BMK (Battery Monitor Kit) to be installed.

Figure 1-2, Router Features (front cover removed)
2.0 Installation

Review this section and the important safety information on page ii before proceeding with the installation of your router.

WARNING: Installations should be performed by qualified personnel, such as a licensed or certified electrician. The installer determines which safety codes apply and ensures all applicable installation requirements are followed. Applicable installation codes vary depending on the specific location and application.

CAUTION: When connecting battery power to the inverter, all battery negative connections must be connected prior to the battery positive connections. When removing battery power from the inverter, the battery positive should be removed before any battery negative connections are disconnected. This prevents any communication chips/lines from becoming the DC return path to the battery—causing permanent damage to all connected accessories.

Summation: Ensure all battery negative circuits are always connected before connecting or disconnecting battery positive.

2.1 Pre-Installation

Before proceeding, read the entire Installation section to determine how you are going to install your ME-RTR router. Save time and avoid common, costly mistakes by thoroughly planning the installation before you start.

2.1.1 Inverter Requirements

The router is used to control multiple Magnum inverters that are normally connected in parallel. Each connected inverter must: be the same model (i.e., two MS4024PAEs), use the same settings, and be connected to the same battery bank. If the inverters are not stacked, see Appendix C.

2.1.2 Installation Guidelines

- Before connecting any wires, determine the router’s cable route throughout the home or vehicle/boat—both to and from the inverter.
- Always check for existing electrical, plumbing, or other areas of potential damage BEFORE drilling or cutting into walls to mount the router.
- Make sure all wires have a smooth bend radius and do not become kinked.
- If installing this router in a boat, RV or truck, ensure the conductors passing through walls, bulkheads, or other structural members are protected. This minimizes insulation damage (such as chafing) which can be caused by vibration or constant rubbing.

2.1.3 Unpacking and Inspection

Carefully remove the ME-RTR router from its shipping container and inspect all contents. Verify the following items are included:

- ME-RTR router (with removable front cover)
- Two 6’ RJ14 remote cables (see Figure 2-4)
- Two 6’ RJ45 stack cables (see Figure 2-5)
- Four #8 x 3/4 Phillips screws (for wall mounting)
- ME-RTR Owner’s Manual

If items appear to be missing or damaged, contact an authorized Magnum Energy dealer or Magnum Energy.

IMPORTANT: Save your proof-of-purchase as a record of your ownership; it is needed if the unit should require in-warranty service.

2.1.4 Tools Required

Installing the router is simple and requires the following tools:

- Phillips screwdriver
- Cut-out tool (knife/saw)
- Level
- Pencil
- Drill
- Drill bit (7/64”)
2.2 Installation Overview

The simplified system diagram shown in Figure 2-1 should be reviewed to assist you in planning and designing your installation. This drawing is not intended to override or restrict any national or local electrical codes, nor should it be the determining factor as to whether the installation is compliant—that is the responsibility of the electrician and the onsite inspector.
2.3 Router Dimensions

Figure 2-2, Router Dimensions (with Front Cover)

Figure 2-3, Router Mounting Holes and Cutout Sections (back)
2.4 Communications Cables – Provided

With the purchase of the ME-RTR router, Magnum has included four six-foot, yellow communication cables. These cables—shown below—are provided to make connections between the router and your Magnum inverter easier and code compliant. Two of the communications cables are remote (RJ14) cables, two are parallel stack (RJ45) cables.

Most of the systems that use the router will also use an enclosure that includes the components required in a parallel inverter system (i.e., Magnum’s panels). The NEC/CEC requires the insulation of all conductors inside the enclosure to be rated for the highest voltage present. The router is designed to work with 120/240 VAC inverters, therefore, the voltage rating of the communications cables inside the enclosure must be rated for 300 volts or higher to be code compliant. These communications cables have 300-volt rated insulation, to meet NEC/CEC requirements DO NOT substitute for the supplied cables—most cables do not have the properly rated insulation.

Info: These cables carry less than 30 volts and are thus considered a "limited energy circuit", which is normally not required to be installed in conduit.

Info: Additional stack cables are available with the purchase of a Magnum MPX Series enclosure. Stack cables are not sold separately. If NEC/CEC requirements do not apply, a CAT 5 cable (RJ45/8P8C) can be used. However, this CAT 5 cable must be no longer than 6 feet—this ensures there is no communication issue as these cables transmit/receive high speed data.

Figure 2-4 shows a ‘REMOTE’ cable (two are supplied). This cable is 6’ (1.83m), with a RJ14 6P4C (6-position/4-conductor) telephone-type male connector and a blue REMOTE label on each end. It comes with 300-volt rated, yellow insulation. One end of this cable is connected to one of the communication ports (P1-P6) on the router (see Figure 2-6 or 2-7), and the other end is connected to the inverter’s Remote port (normally routed inside the MP enclosure) as shown in Figure 2-10.

![Figure 2-4, Remote (RJ14) Communication Cable](image)

Figure 2-5 shows a ‘STACK’ cable (two are supplied). This cable is 6’ (1.83m), with a RJ45 8P8C (8-position/8-conductor) connector on each end. It comes with 300-volt rated, yellow insulation. One end of this cable is connected to one of the stacking ports (MA-SL3) on the router (see Figure 2-11), and the other end is connected to the inverter’s Stack/Accessories port (normally routed inside the MP enclosure) as shown in Figure 2-10.

![Figure 2-5, Parallel Stack (RJ45) Communication Cable](image)

2.4.1 Network Cable

A network cable is not supplied with the router, but is included with the purchase of Magnum’s networked accessories (i.e., ME-AGS-N, ME-BMK). If stacking inverters on Magnum’s MP Series enclosures, the regular network cable must be replaced with a high voltage network cable, which is included with the purchase of the MP Series enclosure. This cable has 300-volt rated yellow insulation, is 6’ (1.83m) long, and has a RJ14 6P4C (6-position/4-conductor) telephone-type male connector on each end. One end of this cable is connected to the accessory, and the other end is connected to the router’s Comm port or the inverter’s Network port (see Figure 2-11). This cable is wired similar to the remote cable, and can be substituted for the remote cable, if needed.
2.5 Communications Cable Routing

Before mounting the router on a wall, determine whether to surface mount or to conceal the cable connections to the router. The cables can be flush-mounted—concealed—through an opening in a wall (Figure 2-6); or, if there is insufficient room behind the wall or no desire to cut into the wall, the cables can be surface-mounted (Figure 2-7).

Info: If the router is being installed on a Magnum panel enclosure (MP), a router mounting bracket is provided with the Magnum panels. This bracket can be attached to either the left or right-hand side. Refer to the MP Owner’s manual (PN: 64-0028) for information on mounting the router on a MP panel.

Info: If the cables are installed on the surface, the router’s front cover has cutout sections to accommodate the cables (see Figure 2-8). These cutout sections are made thinner to allow them to be easily broken or cut. Only remove those cutout sections needed for the number of cable connections you are installing.

Figure 2-8, Router Front Cover’s Cable Connection Cutouts
2.6 Mounting the Router on a Wall

CAUTION: The router must be located close to the inverter/chargers (within six feet). The router is designed to exchange data from the master inverter with one or multiple slave inverters. The high speed communication data between the stack ports on the router and the inverter ensure the slave inverters are synchronized to the master inverter. To ensure the communications is not impacted, DO NOT exceed the 6-foot stack cable distance between the router and each connected inverter.

Info: If a more distant monitoring location is required (more than six feet), a ME-RC50 or ME-ARC50 remote control may be connected and acts as a remote on/off switch to assist in monitoring the system. See Section 9.0 for more information.

To mount the router on the surface of a wall:
1. Select an appropriate location to install the router (see Figures 2-2 & 2-3 for the router’s dimensions).
2. Remove the router’s front cover, and then use the router bezel as a template to mark the screw holes and the sections of the wall (or mounting surface) to remove to accommodate the routing of the communication wires (Sections A-D on Figure 2-9).
 Note: If you are not routing the communication wires thru the wall, there is no need to cut sections from the wall.
3. Once the screw holes have been drilled and the optional wall sections are removed, mount the router bezel to the wall using the 4 screws that are provided.

![Figure 2-9, Mounting the Router to a Wall](image)

2.7 Connecting the Communication Cables

The stack and remote communication cables are used to connect each inverter/charger directly to the router. A network cable is used to connect accessories to the router.

Each paralleled inverter/charger requires a high speed parallel stack cable connected to a stack port on the router—marked MA (Master), SL1 (Slave 1), SL2 (Slave 2), and SL3 (Slave 3)—see Figure 2-1. One inverter/charger will always be designated the “Master”, and subsequently any other connected inverter/chargers are designated as “Slaves”. You can stack up to four MS-PAE or MS-PE Series inverter/chargers using one router. It is recommended that you set up the Master inverter as the first unit on the left, and Slave 1 as the second unit, etc.
Once the stack cables are connected, coordinate the remote cables to the communications ports so that the Master inverter is connected to Port 1 and the Slave 1 inverter is connected to Port 2 (the remote and stack cables are connected to the inverters in order from left to right—MA (Master), SL1, SL2, and SL3). This configuration makes it easy to keep track of which inverter is displayed on each port, and allows you to identify the master and slave units without having to trace the wires from the router to each inverter.

Figure 2-10, Connecting the Parallel Stack and Remote Cables to an Inverter

2.7.1 Connecting the Remote/Network Cables

To connect the remote cables:

1. Connect a remote cable to the Remote port on every inverter installed in parallel (see Figures 2-1 & 2-10), using the supplied cables.
2. Route the inverter-connected remote cables from each inverter/charger to your router. Follow the same route you used for the stack cables.
3. Connect each remote cable to its respective communication port on the router (P1-P6 per the number of inverters installed in parallel). Refer to Section 2.4 and Figures 2-6 & 2-7.
4. Connect any accessories to the remaining open communication ports on the router using a network cable.

Info: A maximum of four inverters can be connected to a router to work in parallel with each other. If the maximum number of inverters are connected, two open ports remain. If a ME-ARC or ME-RC remote is connected to a router, it must be connected directly to a remote communication port on the router. If there are still open communication ports on the router, connect any accessories—such as an ME-AGS-N or ME-BMK—directly to the router first. Then, if all the router’s communication ports are being used and there are additional accessories, they may be connected to the Network ports on the inverters.

Info: Any accessory connected directly to the Network port on an inverter will display as an accessory on the router port to which that inverter is connected.

Example: A ME-AGS-N connected to the Network port on the master inverter (P1) will display as P1A on the router.

Info: Multiple accessories of the same type may be connected to the system, but there are limitations to the number of accessories. You may connect a maximum of one ME-RC or ME-ARC remote, two ME-AGS-N modules, and up to six ME-BMK/ME-BMK-NS accessories.
2.7.2 Connecting the Parallel Stack Cables

To connect the parallel stack cables:
1. Connect a stack cable to the Stack/Accessories port on every inverter installed in parallel (see Figures 2-1 & 2-10).
2. Route the inverter-connected stack cables from each inverter/charger to your router. Depending on your particular setup, the cables may need to be routed through walls or the MP panel enclosure system.
3. Connect each stack cable to its respective stack port on the router (MA, SL1, SL2, and SL3 ports for the appropriate number of inverters installed in parallel). See Figure 2-11.

 Info: At least one stack cable must be plugged into the router’s MA port in order for the router to operate any inverters.

2.8 Installing the Router’s Front Cover

Once all the wiring is completed, you are ready to re-install the front cover (if using the Aux Relay, refer to Section 2.9 before re-installing the front cover). If you have surface mounted your router, you must first remove those cutout sections from the front cover that are needed for the number of cable connections you have installed (see Figure 2-8).

Tip the top of the front cover down and hook it over the router top (protruding horizontal tabs on inside top of the front cover go under corresponding mounting tabs at top of router), and then drop the front cover down (cover the router’s bottom vertical tabs). Install the two flathead Phillips screws into the bottom tabs to hold the front cover in place (see Figure 2-12).
2.9 Wiring the Auxiliary (Aux) Relay

The Aux Relay provides a 2-wire dry contact relay (i.e., no voltage provided) that is either open or closed, and can be wired to any device requiring a contact closure to operate. For example, it can be used as a signal relay to power a higher current relay.

Relay Information

- A single-pole, single-throw relay provided with the NO (Normally Open) and COM contacts.
- Contact rating: up to 30 VDC @ 1 amp, and from 31 VDC up to 60 VDC @ .25 amp.
- Opens if power to the router (provided through the inverter remote cable) is lost.
- Provides “dry contact” connections (it does not provide any voltage or current)—power for any external device requiring voltage or current must be provided through the relay.
- This relay is not intended to directly provide power. Rather, this relay can be used to send a signal to operate the coil of another higher amperage device that does the actual switching of power.

CAUTION:

- Any voltage connected to the relay must be less than or equal to the relay’s contact ratings (Contact Ratings: ≤ 1A up to 30 VDC, ≤ .25A from 31 VDC to 60 VDC).
- An in-line fuse rated up to 1 amp (up to 30 VDC) or .25 amp (from 31 VDC to 60 VDC) must be used to protect all power circuits connected to the Aux Relay (do not fuse ground connections). The fuse should be located as close as possible to the power source. A fuse must be used, even if the circuit is providing only a “dry contact” or “ground” connection—it will prevent damage if the connection is miswired or damaged. Ensure the fuse is correctly rated for the wire size used. Refer to national and local codes for rating and type.
- The Aux Relay circuit is not rated for AC volts and may cause damage if used.
- The warranty does not cover damage to this relay.

Relay Terminal Block

The Aux Relay is wired through an Euro-style removable connector (Figure 2-13). The connector provides a two-port screw-type terminal block for wiring. This terminal block is friction-fit into the connector and can be removed by pulling it straight out. Each port on the terminal block accepts a CU/AL single wire from #28 to #12 AWG (0.3 to 2.3 mm²).

Info: For information on setting the Aux Relay, refer to the `CTRL: 04 RTR Aux Relay` menu.

![Figure 2-13, Wiring the Auxiliary Relay](image)
Setup

3.0 Setup

When a router is connected to a Magnum inverter/charger, the settings in the router determine the inverter/charger’s operating parameters. This section shows you how to navigate the router and gives you an understanding of the function of each adjustable setting. See Figures 4-1 through 4-5 for complete maps of the router’s menu items and adjustable settings.

*** IMPORTANT ***

All settings/setup menus in the router are compatible with MS-PAE/MS-PE Series inverter/chargers. If you are using the router with an inverter/charger other than the MS-PAE/MS-PE Series, some features and setup menus may not be compatible and will not function. Refer to Appendix B to determine if a particular feature/setup menu is compatible with your inverter. Refer to Appendix C for additional information on using the router with non-stacked inverters.

3.1 Power-up Routine

When the router is first connected to an inverter, a power-up routine is initialized. During the power-up routine, the LCD displays “MAGNUM ENERGY, Self Test, ME-RTR, and Version 3.1” for approximately 5 seconds. The next three Set System Clock screens prompt you to set the current time (HOURS, MINUTES, and AM/PM). Once the clock is set, the System Home screen is displayed.

3.2 Navigating the Router

Familiarize yourself with the controls on the front panel which are used to find, adjust, and save the desired settings (refer to Figure 1-1). They are:

- **LCD Display** – The 4-line LCD display shows status and operation information for the inverter/charger and any attached accessories. All setup menus and faults also appear on the LCD display. If there are more choices than will fit on the screen, up and down arrows are present to guide you in accessing those choices. An up arrow indicates you must rotate the SELECT knob counterclockwise to display the next line. A down arrow requires a clockwise rotation. If both an up and down arrow display, rotate the SELECT knob clockwise or counterclockwise to display all the hidden lines. See Figure 3-2 below for an example of a screen sequence.

- **Menu Buttons (x5)** – These buttons allow simple access to menu items for configuring, monitoring, and troubleshooting your inverter/charger system.

- **Rotary SELECT Knob** – This rotary knob allows you to quickly scroll through and select various menu items and settings. Pressing the knob selects the menu item to change, or saves the current selection.

 Info: The “—” (left facing arrow) symbol indicates that the displayed setting has been selected and will be used (if the menu item is blinking, it has not yet been selected; press the SELECT knob to select that menu item). Refer to Figure 3-2 for an example.
3.3 Router Buttons and Menu Items
The five menu buttons (PORT, CTRL, METER, SETUP, and TECH) allow the inverter/charger system to be configured to your specific preferences. These buttons also allow you to access menu items that can help with monitoring and troubleshooting your system.

3.3.1 PORT Button and Menus
The PORT button allows you to access each active communication port. The communication port can be one of the six ports at the bottom of the router, or it can be a Remote (blue) or Network (green) port on the inverter. An inverter or accessory must be connected to a communication port in order to be programmed and to display status info.

As you press the PORT button, the home screen menu ("Home" appears in the bottom right corner of the router’s LCD display) for each device that is communicating with the router is shown. Each home screen provides information and the status of the connected device.

Info: When you are at a specific device’s home screen, you can directly access the meter and setup menus for that device by pressing the METER or SETUP button.

Info: When an accessory is plugged into a communication port (P1-P6) on the router, the PORT button displays the accessory as the corresponding port (i.e., in Figure 3-3 below, Port 3 shows "AGS Home"). If an accessory is plugged into the Network port on one of the parallel inverter/chargers, the PORT button displays the accessory as "P#A" (i.e., a ME-AGS-N plugged into a parallel inverter/charger that is plugged into Port 1 would display as "P1A").

Info: After pressing the PORT button, use the SELECT knob to scroll through all the active ports, as well as all empty router communication ports.

Figure 3-3, PORT Button

3.3.2 CTRL (Control) Button and Menus

The CTRL button accesses the 01 AC In Control, 02 Charger Control, 03 Gen Control, and 04 RTR Aux Relay menus.

Info: An AGS must be connected in order for the Gen Control menu to display unless the TECH: 07 Show all Menus menu has been set to “YES”. Refer to Section 3.3.5 for more info on the TECH 07 menu. Otherwise, “No AGS Present” appears on the 03 Gen Control screen.

The CTRL button gives you quick control of the main functions of the inverter/charger without having to access the SETUP button’s menus in order to change the operation of the inverter/charger or the generator. Once the settings have been programmed in the SETUP menus, the features can then be enabled using the CTRL button.

Example: The SETUP menu’s 02C AC In – Time setting is used to set what time of day (e.g., 12AM to 8AM) you want the inverter to connect to the incoming AC. Once this time is set, use the CTRL button to access the Set AC In Control menu item and select Time Connect. When Time Connect is selected, the inverter/charger will only connect to AC when the time is between 12AM and 8AM.

Figure 3-4, CTRL (Control) Button and Menus

CTRL: 01 AC In Control

The 01 AC In Control menu has four different conditions in which the inverter/charger connects to an incoming AC power source. Only one may be selected at any time—multiple conditions can be set up and enabled, but only one can be active at any time.

Info: The top status line of the LCD display alternates the inverter/charger status with a secondary AC IN status when AC is present, but is not connecting as a result of a setting made in the SETUP menu.

Example: AC is present, but Time Connect has been selected from the 01 AC In Control menu and the current time of day is 6PM. The SETUP menu’s 02C AC In – Time current setting is 2AM-8AM. The current time of 6PM is outside the connect time, so the inverter/charger will not connect to the incoming AC until after 2AM. The primary status will display “Inverting” and the secondary status will display “Time Connect” to let you know the reason that incoming AC has not connected.

- **Auto Connect:** Automatically connects to incoming AC power when the incoming AC is qualified by the inverter/charger (voltage is below the high AC input requirements, above the SETUP button’s 03B Low VAC Dropout setting, and between 50 Hz to 70 Hz for domestic models; 40-60 Hz for export models).
Info: The *Auto Connect* setting must be selected if the incoming AC source is a generator. There is no benefit from using the *AC In* feature if the AC source is from a generator—the generator power may not be available if an *AC In* feature is activated; because also, when the generator is turned on (autostarted or manually), it may be prevented from connecting because the criteria to allow the AC input to connect (*AC In* is based on time, VDC, or SOC) may not have been met.

Note: This is true unless using an inverter that has two independent AC inputs—one for grid and the other for generator (i.e., MSH4024RE), because the *AC In Control* features only work with the GRID IN (AC1) input.

- **Time Connect:** Incoming AC only connects when the time of day is between the *Connect* and *Disconnect* time settings in the SETUP menu’s 02C *AC In – Time* menu item. See SETUP menu 02C on page 27 for a complete explanation of the *Connect/Disconnect* time menu settings.

- **VDC Connect:** Incoming AC only connects when the DC battery voltage falls below the *Connect* volts setting in the SETUP menu’s 02D *AC In – Volts DC* menu item. Disconnects from incoming AC when the DC battery voltage rises above the *Disconnect* volts setting, also from the 02D *AC In – Volts DC* menu. See SETUP menu 02D on page 27 for a complete explanation of the *Connect/Disconnect* volts menu settings.

- **SOC Connect:** Incoming AC only connects when the battery bank SOC falls below the *Connect* setting in the SETUP menu’s 02E *AC In – SOC* menu item. Disconnects from incoming AC when the battery bank SOC rises above the *Disconnect* setting, also from the 02E *AC In – SOC* menu. This feature requires the optional ME-BMK (battery monitor) to be installed. See SETUP menu 02E on page 28 for a complete explanation of the *Connect SOC* menu settings.

Info: If *SOC Connect* is selected and the incoming AC connects, the router issues a one-time “Start Bulk” command to the inverter/charger. This ensures the charger enters the Bulk/Absorb charge cycle regardless of battery voltage.

- **AC In – Disabled:** Disconnects incoming AC when selected. This setting prevents the incoming AC from connecting to the inverter/charger.

CTRL: 02 Charger Control

The 02 *Charger Control* menu enables you to set the charge mode to *Multi-Stage*, *Start Float*, or to *Start Bulk*. Most of the time the charger should be left in the *Multi-Stage* setting, but to override this setting use the CTRL button and the 02 *Charger Control* menu. The charger can be forced to start the Float or Bulk charge mode using the *Start Float* or *Start Bulk* settings from this menu.

- **Multi-Stage:** This charge profile causes the charger to automatically operate thru the multi-stage (Bulk, Absorption, and Final Stage) charge cycles. When AC is connected and the charge mode begins, the inverter's battery voltage is monitored to determine the charging stage. If the battery voltage is low (≤12.8 VDC/12-volt models, ≤25.6 VDC/24-volt models, or ≤51.2/48-volt models), the charger begins Bulk Charging. If the battery voltage is high (≥12.9 VDC/12-volt models, ≥ 25.7 VDC/24-volt models, or ≥ 51.3/48-volt models), the charger skips the Bulk and Absorb charge stages and goes directly to the final charge stage (*Multi-Stage*, *Float*, or *Silent*) as selected in the SETUP: 03F *Final Charge Stage* menu item.

Note – If the SETUP: 03C *Battery Type* selection is *CC/CV*, once AC connects and the charge mode begins, the charger enters the Constant Current charge mode. If the CTRL: 01 *AC In Control* setting is "SOC Connect," or if the SETUP: 03D *Absorb Done* setting is "SOC," then the charger will always enter the Bulk Charge mode once AC is connected and charging begins.

- **Start Float:** This selection restarts the Float charge cycle from any stage in the charge cycle as long as the charger is active.

Info: The *Start Float* selection automatically defaults back to the *Multi-Stage* setting once the inverter/charger status displays “Float Charging” (or “Silent” if battery type *CC/CV* is selected).

Info: If battery type *CC/CV* is chosen, the *Start Float* selection transfers the charger to Silent mode—unless “Hold CV Chg Volts” is selected, then the charger enters the Constant Current charge mode.
• **Start Bulk**: This selection restarts the Bulk charge cycle from any stage in the charge cycle as long as AC is present and the charger is active. The **Start Bulk** selection is useful when a full multi-stage charge cycle does not bring the specific gravity of the batteries to the proper level.

 Info: After **Start Bulk** is selected and activated, the 02 Charger Control selection automatically returns back to the Multi-Stage setting.

 Info: If the current charge mode is Bulk or Absorption, and **Start Bulk** is selected, “Already in Bulk/Abs” displays on the router.

 Info: If battery type CC/CV is chosen, and the charger is in Silent charge mode, the **Start Bulk** selection transfers the charger to Constant Current mode.

 Info: If you have to continually restart the bulk cycle in order to bring the batteries to full charge, check the settings from the SETUP: 03 Charger Setup menu to ensure the batteries are fully charged at the end of a regular multi-stage charge cycle.

CTRL: 03 Gen Control

03 Gen Control is used for controlling a standby generator that is connected to the system and using the optional ME-AGS-N module. Once the AGS-N is installed in the system, the generator can be manually started and stopped, or set to start and stop automatically from this menu.

Note: Options include: OFF (default setting), ON and AUTO.

 Info: The AGS-N must be installed in order for the 03 Gen Control menu to control a standby generator. See the ME-AGS-N owner’s manual (PN: 64-0039) for information.

 Info: If a ME-ARC is directly connected to one of the router’s communication ports (P1-P6), it can be used in a remote location as a remote on/off switch, and can assist in monitoring the system and controlling a generator that is connected to an AGS-N.

 Info: If a ME-ARC is directly connected to the router, the ARC’s CTRL button function is defeated. However, the Gen Control selection is in the ARC’s FAVS menu, and the gen can be controlled via the ARC through the FAVS menu, but not through the CTRL menu.

• **OFF**: The **OFF** selection will stop the generator by sending a ‘stop’ command from the AGS-N control module (can be running from either a manual start or an autostart command from the AGS). The generator will not start automatically if **OFF** is selected.

 Info: If DC power is lost to the router, this menu resets to the default **OFF** position for safety.

 Info: When **OFF** is selected, the generator turns off immediately—regardless of any delay settings (e.g., Cooldown).

• **ON**: The **ON** selection starts the generator by sending a ‘start’ command from the ME-AGS-N control module. Once the generator is started, it may be stopped by selecting **OFF** from the 03 Gen Control menu, which sends a stop command from the AGS-N.

 Info: The generator can be started manually and stopped automatically by first selecting **ON** from the 03 Gen Control menu, and then once the generator is running changing the setting to **AUTO**. With this scenario, the generator stops when either the **Stop Volts** setting under the SETUP/04A Gen Run DC Volts menu (even if not enabled) is satisfied, or the **04F Max Gen Run Time** setting is reached—whichever occurs first.

 Info: The **ON** selection uses warm-up time. The **OFF** selection stops immediately and does not use the cooldown time.

• **AUTO**: This selection uses SETUP button’s **04 AGS Setup** menus to automatically start and stop the generator. See Section 7.0 for the conditions and settings that can be used to start and stop the generator.
CTRL: 04 RTR Aux Relay

The Aux Relay can be programmed to open or close based on the inverter’s battery voltage, the battery’s state of charge (SOC), or used to indicate an inverter fault has occurred.

Note: Options include: Force Open (default setting), Force Closed, Auto VDC, Auto VDC (BTS Comp), Auto Fault, and Auto SOC.

Info: When the relay is open (de-energized), the Aux Relay’s LED (yellow) is off. When the relay closes (energized), the Aux Relay’s LED is on.

- **Force Open** – Manually forces the Aux Relay contacts to stay open. This setting manually controls the device connected to the Aux Relay, or can be used to test the Aux Relay operation.

- **Force Closed** – Manually forces the Aux Relay contacts to stay closed. This setting manually controls the device connected to the Aux Relay, or can be used to test the Aux Relay operation. This setting also allows the Aux Relay to be forced closed and to stay closed until the open setting [under the Auto VDC, Auto VDC (BTS Comp) or Auto SOC setting] is reached.

 Normally, the Aux Relay is open until the closed setting is reached. However, if Forced Closed is selected first, and then:

 - **Auto VDC or Auto VDC (BTS Comp) is selected**—if the battery voltage is between the open and close settings after Auto VDC or Auto VDC (BTS Comp) is selected, the relay will stay closed until the VDC open setting (and any delay time) is reached.

 - **Auto SOC is selected**—if the SOC value is between the open and close settings after Auto SOC is selected, the relay will stay closed until the SOC open setting is reached.

Info: When the Force Open or Force Closed options are selected, the Aux Relay will open or close without any time delay.

- **Auto VDC** – Automatically activates the Aux Relay based on adjustable DC voltage settings under the SETUP: 01F RTR Aux Relay menu. The relay uses the Close Volts and Open Volts settings to close and open based on a low or high DC voltage, and allows the relay to be configured to activate either as an “active high” or “active low” type relay. This relay also uses the Close Delay and Open Delay settings to automatically control the Aux Relay’s open and close delay times. (Refer to the SETUP: 01F RTR Aux Relay menu on pages 24-25 for more information on these settings.)

- **Auto VDC (BTS Comp)** – Same as the Auto VDC setting. However, it compensates the voltage settings based on the battery temperature reading when the BTS (Battery Temp Sensor) is used. **Example:** The Open Volts setting is 26.2, the Close Volts setting is 25.1, and the BTS temperature is 50°F (a voltage compensation of +0.9 volts*). In this scenario, the aux relay will open when the actual battery voltage is 27.1 (26.2 + 0.9) and close when the actual battery voltage is 26.0V (25.1 + 0.9).

 * - Refer to “BTS Temperature to Charge Voltage Change” chart in your inverter owner’s manual.

Info: When the Aux Relay automatically activates using the Auto VDC or AUTO VDC (BTS Comp) setting, the DC voltage is based on the DC voltage reading from the System Home screen.

- **Auto Fault** – This setting causes the Aux Relay to stay open during normal operation, but closes when an inverter/charger fault is detected (see Section 5.3.4 “Fault Mode Messages” for a list of inverter/charger faults).

 Note: The Aux Relay re-opens when the fault is cleared.

- **Auto SOC** – Automatically activates the Aux Relay based on adjustable SOC settings under the SETUP: 01G Aux Relay SOC menu. The relay uses the Close and Open SOC settings to close and open based on the battery SOC, and allows the relay to be configured to activate either as an active high or active low type relay. (Refer to the SETUP: 01G Aux Relay SOC menu on page 25 for more information on these settings.)

Info: The Auto SOC feature requires the optional ME-BMK (battery monitor) to be installed.
3.3.3 METER Button and Menus

The METER button gives you access to the various meters which help determine the status of the inverter/charger and battery system.

Info: Depending on the inverter, some meter functions may not be accessible. Refer to Appendix B for more information.

Info: The displays automatically return to the System Home screen five minutes after the last button push, except when using the METER button. Menus selected under the METER button stay and do not return to the home screen, this is useful for displaying commonly used meter readings.

Info: Pressing and holding down the METER button (~2 seconds) takes you back to the System Home screen from any menu.

Figure 3-5, METER Button and Menus

METER: 01 DC Meters

The **DC Meters** menus display battery voltage to the inverter and DC amps to/from the batteries. Use these meters to monitor your battery bank.

- **01A DC Volts to Inv:** This meter displays the battery voltage connected to each inverter. The accuracy is ±1.5% with a 0.1 VDC resolution.

- **01B Inv/Chg DC Amps:** This meter displays the inverter (-) or charger amps (+) and is shown as a DC value. A negative number indicates the inverter is powering the inverter loads and shows how much current is being removed from the battery (inverter amps). A positive number indicates the amount of current delivered to the batteries (charger amps) from the AC input source. This meter converts AC amps to display DC amps, so the accuracy below one amp AC (~10 amps DC @ 12 VDC) is not detected. When the current in or out of the batteries is greater than one amp AC, the accuracy of this meter is ±20%.

METER: 02 AC Meters

- **02A AC Output Volts:** This meter displays the AC voltage at the inverter’s output terminals. If inverting, the inverter’s output voltage is displayed. If in Standby mode, the voltage that is passing through the inverter from the AC input source (i.e., grid or generator) is displayed.

 MS-PAE Series (240 VAC output): Even though these inverters provide 240 volts, this meter displays the AC output voltage as a nominal 120-volt value. It is calculated by adding the voltage from each hot out (i.e., HOT 1 to NEUTRAL and HOT 2 to NEUTRAL) and dividing by two.

- **02B AC Output Hz:** While inverting, this meter displays the output frequency of the inverter. When in Standby mode, this meter displays the frequency of the incoming AC source (i.e., grid or generator) that is passing through the inverter to the inverter’s output terminals. The frequency value is shown in Hertz (Hz).
MS-PAE (menus 02C-02G) or MSH models only (menus 02C-02I):

- **02C System AC Amps:**

 AC Load: This meter is the sum of the values from the 02E AC Load Amps menu for each inverter connected in parallel (i.e., MS-PAE or PE Series). See the 02E AC Load Amps section for more information on how the AC load amps value is determined.

 AC Input: This meter is the sum of the values from the 02F AC Input Amps menu for each inverter connected in parallel (i.e., MS-PAE or PE Series). This reading is always displayed as a positive (+) number. See the 02F AC Input Amps section for more information on how the AC input amps value is determined.

- **02D Inv/Chg Sys Amps (In/Out of Battery):** This meter is the sum of the values from the 02G Inv/Chg AC Amps menu for each inverter connected in parallel (i.e., MS-PAE or PE Series). See the 02G Inv/Chg AC Amps section for more information on how the inverter and charger AC amps value is determined.

- **02E AC Load Amps:** This meter displays the total AC current delivered to the loads on the inverter’s AC output terminals. The *Load Amps* value is positive (+) showing power is being pulled from the inverter to run an AC load—either using the batteries in Inverter mode, or from the AC input source in Standby mode.

 When I look at the Loads Amps display on a remote, how is this value calculated?

 For MSH Series inverters: The *Load Amps* is determined by subtracting the input current value (02F AC Input Amps) from the current charging the battery (02G Inv/Chg AC Amps).

 ◦ **Inverter Mode example:** 0A (input amps) minus – 10A (inverter amps) = 10A (load amps), see Figure 3-6. A Load Amps of 10A means 10A x 120V = 1200W load on the inverter.

 ◦ **Standby Mode example:** 20A (input amps) minus 10A (charger amps) = 10A (load amps), see Figure 3-7. A Load Amps of 10A means 10A x 10A x 120V = 1200W load on the inverter.

 ◦ **Load Support Mode example:** 10A (input amps) minus – 10A (inverter amps) = 20A (load amps), see Figure 3-8. A Load Amps of 20A means 20A x 120V = 2400W load on the inverter.

 For MS-PAE and MS-PE Series inverters: The *Load Amps* value is shown as 120VAC current, even though there may be 240VAC loads, and is calculated differently based on the mode.

 ◦ When in inverter mode, the *Load Amps* value is the sum of all the 120V currents from both HOT 1 and HOT 2 outputs.

 Example: If I have a 5A @ 120V load on the HOT 1 output, a 15A @ 120V load on the HOT 2 output, and a 2A @ 240V load on the HOT 1 and HOT 2 outputs; what would the *Load Amps* menu display? The display shows 24A, which is the 120V equivalent current. Calculated as:

 \[
 \begin{align*}
 \text{AC1 to Neutral} &= 5A @ 120V \\
 \text{AC1 to AC2} &= 2A @ 240V (2A @ 120V + 2A @ 120V) \\
 \text{Load Amps value} &= \text{sum all 120V currents (5A+15A+2A+2A)} = 24A (24A \times 120V = 2880W)
 \end{align*}
 \]

 ◦ When in Standby mode, the *Load Amps* value is determined by subtracting the input current value (02F AC Input Amps) from the current charging the battery (02G Inv/Chg AC Amps).

 Example: 20A (input amps) minus 10A (charger amps) = 10A (load amps), see Figure 3-7. A Load Amps display of 10A means 10A x 120V = 1200W load on the inverter.

- **02F AC Input Amps:** This meter displays the total AC amps being used by the inverter for charging and for any load connected to the output of the inverter. This reading is always displayed as a positive (+) number.

 Example: If the charger is delivering 20A to the battery from the AC source and the load connected to the inverter output is using another 10A, the combined load on the incoming AC source is 30A. So the input amps would display 30A.

- **02G Inv/Chg AC Amps:** This menu displays the inverter or charger amps and is shown as an AC value. A negative (−) amps reading indicates the inverter is powering the inverter loads and the batteries are discharging (inverter amps). A positive (+) amps reading indicates the inverter is using the AC input source to charge the batteries (charger amps).
Setup

MSH models only:

- **02H Input Volts AC1:** This menu displays the RMS value of the AC voltage at the inverter’s AC1 and NEUTRAL input terminals.

MSH-RE models only:

- **02I Input Volts AC2:** This menu displays the RMS value of the AC voltage at the inverter’s AC2 and NEUTRAL input terminals.

 Info: The 02I Input Volts AC2 menu only displays if the router is connected to a dual source inverter/charger that has an AC1 and AC2 input, such as the MSH4024RE.

 Info: If the 02I Input Volts AC2 menu displays voltage (~ 50v), but the generator is off or nothing is connected to the AC2 input, the AC2 neutral-to-ground bond connection is not correct or not connected.

Meter: 03 Timers

- **03A Charge Time:** This meter displays the total time the charger is holding the batteries at a high voltage level, defined as 0.2 volts greater than the float voltage setting. The timer counts while in Bulk, Absorption, or Equalization charge stages (or in the Constant Current and Constant Voltage charge stages if CC/CV is selected under the SETUP/03C Battery Type menu). The meter does not accumulate time when in Float, Charger Standby, Full, or Silent mode. The charge timer resets whenever the charge status goes to “Charging” (AC is connected to the inverter/charger), or the charger initiates another Bulk, EQ, or Constant Current charge cycle.

 Info: The 03A Charge Time value that is displayed is used by the Max Charge Time safety feature to determine when to display “Max Charge Time” and to blink the CHG LED indicator.

 Info: The Max Charge Time safety feature is set and enabled based on the battery type that is selected under the SETUP/03C Battery Type menu:

 a) If the battery type is ‘CC/CV’ – the Set Max CC/CV Charge Time setting is available to set after the CV Chg Done Time (or Amps) is selected under the SETUP/03C Battery Type: CC/CV menu.

 b) If the battery type is not ‘CC/CV’ – the SETUP/03E Max Charge: Time menu is available to set the maximum charge time.

- **03B Days Since:**

 - **Absorb/CV Done** – This menu displays the number of days since the Absorption charge mode was completed (i.e., Absorb Done – Time, Amps, or SOC). This menu resets to zero once an Absorb Done is completed as per the SETUP: 03D Absorb Done setting.

 Info: The 03B Days Since: Absorb/CV Done timer resets to zero once an Absorb Done is completed as per the SETUP: 03D Absorb Done setting; or, the Absorption Charge mode is finished prematurely by starting another charge mode—such as enabling a Start Float charge (using CTRL: 02 Charger Control/Start Float).

 - **EQ Chg Started** – This menu displays the number of days since EQ charge mode has been enabled. This menu resets to zero once equalization has started. The SETUP: 03G Set Days to remind when to EQ menu uses the time shown in this menu to determine when to indicate it is time to perform an equalization charge to the batteries.

Meter: 04 AGS Meters

Refer to Section 7.0 for information on all AGS menus available from the ME-RTR’s METER button.

Meter: 05 BMK Meters

Refer to Section 8.0 for information on all BMK menus available from the ME-RTR’s METER button.
INVERT MODE
Current from the battery is used by the inverter to power the inverter’s AC loads.

Example below:
- Current to inverter input (AC Input) = 0 Amps AC
- Current from battery (Inv/Chg Amps) = -10 Amps AC
- Current to power the AC loads (AC Load) = 10 Amps AC

02B AC Amps:

<table>
<thead>
<tr>
<th>AC Load</th>
<th>10 AAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Input</td>
<td>0 AAC</td>
</tr>
<tr>
<td>P1</td>
<td>Read AC METER</td>
</tr>
</tbody>
</table>

02C Inv/Chg Amps

<table>
<thead>
<tr>
<th>Inv/Chg Amps</th>
<th>(In/Out of Battery)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10 Amps AC</td>
<td>-10 Amps AC</td>
</tr>
</tbody>
</table>

P1 | Read AC METER

STANDBY MODE
Current from the grid/generator to the inverter’s AC input is used to power the inverter’s AC loads and to charge the battery.

Example below:
- Current to inverter input (AC Input) = 20 Amps AC
- Current to power the AC loads (AC Load) = 10 Amps AC
- Current to charge battery (Inv/Chg Amps) = 10 Amps AC

02B AC Amps:

<table>
<thead>
<tr>
<th>AC Load</th>
<th>10 AAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Input</td>
<td>20 AAC</td>
</tr>
<tr>
<td>P1</td>
<td>Read AC METER</td>
</tr>
</tbody>
</table>

02C Inv/Chg Amps

<table>
<thead>
<tr>
<th>Inv/Chg Amps</th>
<th>(In/Out of Battery)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Amps AC</td>
<td>10 Amps AC</td>
</tr>
</tbody>
</table>

P1 | Read AC METER

LOAD SUPPORT MODE
(MSH Series Only)
The MSH Series uses current from the battery to assist in powering the inverter’s AC loads and to reduce the current from the grid/generator.

Example below:
- Current to inverter input (AC Input) = 10 Amps AC
- Current to power the AC loads (AC Load) = 20 Amps AC
- Current from battery (Inv/Chg Amps) = -10 Amps AC

02B AC Amps:

<table>
<thead>
<tr>
<th>AC Load</th>
<th>20 AAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Input</td>
<td>10 AAC</td>
</tr>
<tr>
<td>P1</td>
<td>Read AC METER</td>
</tr>
</tbody>
</table>

02C Inv/Chg Amps

<table>
<thead>
<tr>
<th>Inv/Chg Amps</th>
<th>(In/Out of Battery)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10 Amps AC</td>
<td>-10 Amps AC</td>
</tr>
</tbody>
</table>

P1 | Read AC METER

Figure 3-6, Current Flow – Inverter Mode

Figure 3-7, Current Flow – Standby Mode

Figure 3-8, Current Flow – Load Support Mode
3.3.3.1 Additional METER Menus for Port-connected Inverters

The METER button also provides meter displays for each active port-connected inverter (or accessory) in your system. These displays are similar to those listed in Section 3.3.3, but the displayed information is specific to the particular inverter and/or model (Figures 3-9 & 3-10 below).

Figure 3-9, ALL Ports vs Port-specific METER Menus

To access System Home screen:
- Inverting
 - 25.6VDC 20ADC
 - ALL System Home

Figure 3-10, Accessing Port-specific METER Menus

- Press & hold 3 secs

Port-specific Inverter METER Menus

The following METER menus are available for each port-connected inverter. Information is for the specific selected inverter (versus ALL-Port meters that are system meter information).

METER: 01 DC Meters

- **01A DC Volts to Inverter**: See information for 01A DC Volts to INV menu in previous section.
- **01B Inv/Chg DC Amps (In/Out of Battery)**: See information for 01B Inv/Chg DC Amps menu in previous section.

METER: 02 AC Meters

- **02A AC Output**: See information for 02A AC Output Volts and 02B AC Output Hz menus in previous section.
- **02B AC Amps**: See information for 02C System AC Amps menu in previous section.
- **02C Inv/Chg Amps (In/Out of Battery)**: See information for 02D Inv/Chg Sys Amps (In/Out of Battery) menu in previous section.
- **02D AC Input Volts**: See information for 02H Input Volts AC1 menu in previous section.
 Note: For a MSH-RE model inverters only, this menu also displays input volts for the AC2 source as well (02I Input Volts AC2). Refer to menu maps in Figure 4-2.

METER: 03 Timers

- **03A Charge Time**: See information for 03A Charge Time menu in previous section.
- **03B Days Since**: See information for 03B Days Since menu in previous section.
3.3.4 SETUP Button and Menus

Pressing the SETUP button provides access to the menu items and settings that enable you to configure the router display, the inverter/charger, a ME-AGS-N, and a ME-BMK. Review each menu item to determine if you need to adjust any settings to meet your system requirements.

Info: The first screen that may appear when the SETUP button is pushed is a password screen. If the PIN has been set under the TECH button’s 05 SETUP PIN menu, the first screen is the Set SETUP PIN menu. The proper PIN must now be entered in order to access the SETUP menus. After five minutes from the last button push, the display automatically returns to the System Home screen and the PIN must be reentered in order to access the SETUP menus. Refer to the TECH button’s SETUP PIN menu to set or change the PIN number.

![Figure 3-11, SETUP Button](image)

Figure 3-11, SETUP Button

SETUP: 01 System Setup

The following menus are used to set up the router clock and screen.

- **01A System Clock:** The router contains a real time clock that must be set for proper operation of some features. These features are: the SETUP button’s 02C AC In – Time, 04B Gen Run Time, 04G Gen Quiet Time, 04H Gen Exercise menus, and the TECH button’s 04 Fault History menu items.

IMPORTANT

It is very important that you set the time clock as it is a critical piece in effectively addressing fault issues, as well as for the proper start/stop functions of your AGS device, if installed.

Info: The clock obtains power from the inverter and will reset if the router is disconnected from the inverter.

To Set the Current Time

From the Set System Clock menu:
1. Rotate the SELECT knob to the hour of day, and then press SELECT.
2. Rotate the SELECT knob to the correct minute setting, and then press SELECT.
3. Rotate the SELECT knob to the appropriate AM or PM setting, and then press SELECT.

- **01B Screen Setup:** This setting adjusts the contrast and brightness of the LCD screen to accommodate the current lighting conditions and viewing angle.

 Default settings: Contrast = 100%, Brightness = 50%

 Range: 0-100%
Setup

Info: If DC power is lost to the router, the 01B Screen Setup setting defaults back to the default settings (Contrast = 100%, Brightness = 50%).

- **01C Power Save:** This setting turns off the Power Save™ feature, or you can select a duration of time (from 1 to 60 minutes) that determines when the display goes into Power Save mode. This setting also allows the Port LEDs to be turned “OFF,” or set to “Auto” mode. If you want the Port LEDs to always be off, you will need to set the Port LEDs to OFF. In Auto mode, the Port LEDs automatically blink whenever a device is communicating to a router port.

 Default settings: PowerSave [Min] = OFF, Port LEDs = Auto

 Range: PowerSave = OFF, 1-60 min; Port LEDs = Auto, OFF

What is the Power Save feature? This feature turns off the router’s LCD backlight and LEDs to conserve energy. The router enters Power Save mode if there hasn’t been a button press or fault message for a set period of time (per minutes setting). When in Power Save mode, the router’s LCD backlight and LEDs can be reactivated by pressing any button. If you have a fault during Power Save mode, the LCD backlight and FAULT LED come on and stay on as long as the fault is present.

Info: If you want the LCD backlight and LEDs to always be on (while communicating), the PowerSave [Min] setting must be OFF and the PORT LEDs set to Auto.

Info: Pressing the SELECT knob causes the router to exit Power Save mode. However, rotating the SELECT knob will not cause the router to come out of Power Save mode.

- **01D Temp Display:** This menu item selects whether to display temperatures in Fahrenheit or Celsius. Once you select either Fahrenheit or Celsius, the following menu items are affected by this selection: the METER button’s 04D AGS Temp menu, the SETUP button’s 04E Gen Run Temp menu, and the TECH button’s 01 INV Temperatures menu.

 Default setting: Fahrenheit

 Range: Fahrenheit, Celsius

- **01E Viewing Ports:** The Viewing Ports menu item sets the device “home” screen (i.e., Port Home) to either automatically scroll through each active/connected port, or requires you to manually select each port. Selecting and adjusting the seconds enables the Auto Scroll feature and allows you to determine how long each active device home screen (under the PORT button) is displayed before it automatically scrolls to the next active “home” screen.

 Default setting: Auto Scroll [secs] = OFF

 Range: Auto Scroll = OFF, 1-60 secs

Info: Once the Auto Scroll feature is enabled, the active “home” screen menus under the PORT button begin auto-scrolling after one minute of inactivity (i.e., no button push or pressing the SELECT knob).

Info: Rotating the SELECT knob pauses the display’s auto-scrolling. Once the SELECT knob is no longer rotated, auto-scrolling resumes—it does not require another minute of inactivity to resume auto-scrolling.

- **01F RTR Aux Relay:** The Aux Relay becomes a battery voltage-controlled relay when Auto VDC or Auto VDC (BTS Comp) is selected from the CTRL/04 RTR Aux Relay menu. It can be programmed to open or close on DC volts with an adjustable delay using the following settings.

 Open Volts – The battery voltage trip point at which the Aux Relay contacts will open. This setting can be below or above the Close Volts setting, depending on if you want the Aux Relay to be active low or active high.

 Close Volts – The battery voltage trip point at which the Aux Relay contacts will close. This setting can be below or above the Open Volts setting, depending on if you want the Aux Relay to be active low or active high.

 Default settings:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>10.0 VDC (12v), 20.0 VDC (24v), 40.0 VDC (48v)</td>
</tr>
<tr>
<td>Close</td>
<td>14.0 VDC (12v), 28.0 VDC (24v), 56.0 VDC (48v)</td>
</tr>
</tbody>
</table>

 Range: Open & Close Volts = 8.0-17.0 VDC (12v), 16.0-34.0 VDC (24v), 32.0-68.0 VDC (48v)
Example – Active Low: Set Close Volts below Open Volts voltage. If the Close Volts voltage is set at 24.0 VDC and the Open Volts voltage is set at 29.0 VDC, the relay would close when the battery voltage dropped to 24.0 VDC and open when the battery voltage rises to 29.0 VDC. This configuration might be used to control a battery exhaust fan or as a simple PV charge controller.

Example – Active High: Set Close Volts above the Open Volts voltage. If the Open Volts voltage is set at 24.0 VDC and the Close Volts voltage is set at 29.0 VDC, the relay would open when the battery voltage dropped to 24.0 VDC and close when the battery voltage rises to 29.0 VDC. This configuration might be used to control a low voltage disconnect circuit for a DC load.

- **Open Delay** – Use to delay the opening of the Aux Relay contact once the battery voltage trip point has been reached. This sets a hysteresis so the Aux Relay does not cycle unnecessarily.
- **Close Delay** – Use to delay the close of the Aux Relay contact once the battery voltage trip point has been reached. This sets a hysteresis so the Aux Relay does not cycle unnecessarily.

Default settings: Open & Close Delay = 10 secs
Range: Open & Close Delay = 0-127 secs, then 1-127 mins

Info: The Close/Open Volts and Open/Close Delay settings are only available if the Auto VDC or Auto VDC (BTS Comp) options have been selected (CTRL: 04 RTR Aux Relay).

Example: The Aux Relay is set to Auto VDC. The Open Volts setting is 29.0 VDC and the Close Volts setting is 24.0 VDC, and the Open Delay and Close Delay settings are set to 10 seconds. When the battery voltage reaches 24.0 VDC, after a 10-second delay the Aux Relay will close and the LED will illuminate. When the battery voltage reaches 29.0 VDC, after a 10-second delay the Aux Relay will open and the Aux Relay LED indicator will turn off.

- **01G Aux Relay SOC:** The Aux Relay becomes a battery SOC-controlled relay when Auto SOC is selected from the CTRL/04 RTR Aux Relay menu. It can be programmed to open or close on the battery’s State of Charge using the following settings.

 - **Open** – The battery SOC trip point at which the Aux Relay contacts will open. This setting can be below or above the Close SOC setting, depending on if you want the Aux Relay to be active low (i.e., set Open above Close) or active high (i.e., set Open below Close).
 - **Close** – The battery SOC trip point at which the Aux Relay contacts will close. This setting can be below or above the Open SOC setting, depending on if you want the Aux Relay to be active low (i.e., set Open below Close) or active high (i.e., set Open above Close).

Default settings: Open = 50%; Close = 100%
Range: Open & Close = 20-100%

Info: The METER: 05 BMK Meters/05A BMK SOC meter must have a valid SOC number for the Aux Relay to determine when to start and stop based on the battery SOC. Under the METER/05 BMK Meters/05A BMK SOC menu, Think’n, No Comm, or any BMK fault (i.e., Factory Fault, Power-up Fault, or Unknown Fault ##) are not valid SOC numbers.

SETUP: 02 Inverter Setup
The following menus (02A – 02D) are used to set up only the functions related to the Inverting mode of the inverter/charger.

- **02A Search Watts:** Allows turning off the Search Watts feature or adjusting the power level to determine when the inverter leaves Search mode. If not needed, select Sensitivity = OFF. When search is turned off, the inverter continuously provides full AC voltage to the loads.

 - **Default setting:** Sensitivity = 5 Watts
 - **Range:** OFF, 5-50 Watts

Info: When the Search Watts feature is active, “Searching” appears on the top line of the LCD display and the green INV LED will flash.
Setup

What is the Search Watts feature? This feature is used to help save battery power by reducing the inverter’s output to search pulses when there is no detectable load. If a load greater than the wattage level setting turns on while the inverter is ‘searching’, the inverter will start ‘inverting’ to provide full voltage on its output.

Should I use the Search Watts feature? If the inverter can spend a great deal of time searching (to reduce the power drain on your batteries) and you can tolerate small loads (less than 5 watts) being off, then the Search mode feature should be used. However, if some small loads (e.g., digital clocks, satellite receivers, answering machines, etc.) are required to be on, then this feature should be turned off (Sensitivity = OFF).

Where should I set Search Watts? The Search Watts setting should be adjusted to the same power level (or the next lower setting) of the smallest load that you plan to run. If you don’t know the wattage of the smallest load, turn the switch for the load on and decrease the Search Watts setting until the load comes on and stays on.

Info: Even with Search Watts on, some connected equipment—even if turned off—may draw enough current to keep the inverter in the Inverting mode (i.e., not “searching”).

- 02B Low Battery Cut Out: The Low Battery Cut Out (LBCO) menu sets the DC voltage level that turns off the inverter. This helps protect the batteries from over-discharge damage. If the battery voltage drops below the LBCO set-point continuously for more than 1 minute, the FAULT LED will come on, the inverter will turn off, and the display will show a ‘Low Battery’ status. If the battery voltage falls below 8.5 volts (12-volt models), 17.0 volts (24-volt models) or 34.0 (48-volt models), the FAULT LED and ‘Low Battery’ status indications will be immediate.

Default settings: LBCO Volts = 10.0 VDC (12v), 20.0 VDC (24v), 40.0 VDC (48v)
Ranges: 9.0-12.2 VDC (12v), 18.0-24.4 VDC (24v), 36.0-48.8 VDC (48v)

Where should I set the LBCO setting? If your goal is to not discharge your batteries more than 20%*, then set the LBCO from 11.5 to 12.2 VDC (12-volt models), 23.0 to 24.4 VDC (24-volt models), or 46.0 to 48.8 (48-volt models). In some applications, such as those installed in an off-grid home or when doing a lot of RV dry-camping, you may want to cycle down to 50%* by setting the LBCO from 10.0-11.4 VDC (12-volt models), 20.0-22.8 VDC (24-volt models) or 40.0-45.6 VDC (48-volt models). In extreme circumstances, you have the ability to discharge the batteries to 80%* by setting the LBCO to 9.0-9.5 VDC (12-volt models), 18.0-19.0 VDC (24-volt models), or 36.0-38.0 VDC (48-volt models) before recharging.

* These are rough estimates. For accurate battery monitoring, use the ME-BMK battery monitor.

Info: The higher the LBCO setting, the less the inverter discharges the batteries; which allows the batteries to have a longer life. The down side to a higher LBCO setting is that you need to charge more often to prevent the inverter from shutting off in Fault mode.

IMPORTANT

1. To use the AC In Control features (AC In – Time, AC In – Volts DC, and AC In – SOC), the AC source must always be connected and available for use at the inverter’s AC input—such as utility power. There is no benefit from using the AC In feature if using a generator, because the generator power may not be available when the AC In feature becomes activated.

2. When an AC In feature (AC In – Time, AC In – Volts DC, or AC In – SOC) is selected, that feature is active whether or not there is any AC power on the inverter’s input. If no AC power is available, the inverter continues in Inverter mode. However, if AC power becomes available on the inverter’s input after the connect setting (Time, VDC, or SOC) has been reached, the inverter continues to allow the incoming AC power to be connected and used until the disconnect setting is reached.

3. When using a dual source inverter/charger such as the MSH4024RE, the AC In features only work with the GRID IN (AC1) input.
• **02C AC In – Time**: This feature allows you to connect to the local power utility at a predetermined time of day. When the current time falls within the set times, the inverter/charger connects to the AC that is connected to the AC input terminals. Once outside the set times, the inverter/charger disconnects from the AC source.
 ◇ **Connect** – Determines what time each day the inverter/charger allows the incoming AC to connect and transfer the loads from the inverter’s battery power to the utility grid.
 Default setting: 6:00AM
 Range: 12:00AM-11:45PM (15 minute increments)
 ◇ **Disconnect** – Determines what time each day the inverter/charger disconnects any incoming AC that is connected, and resumes powering the AC loads from the inverter’s battery power.
 Default setting: 6:00PM
 Range: 12:00AM-11:45PM (15 minute increments)

What is the AC In – Time feature? This feature allows the incoming AC to connect to the inverter/charger and charge the batteries only during the time of day as set in the **02C AC In – Time** menu item. Even if AC is present on the AC input terminals of the inverter/charger, it can only connect during those times previously set. The most common use of AC In – Time is when your local utility company offers peak rate savings (or “time of day billing”). The utility company offers the peak rate savings with a lower rate per kWh (kilo Watt hour)—usually available at night when there is less demand on the local utility grid. The AC In – Time feature may save you money by only connecting to the utility when rates are the least expensive.

Where should I set AC In – Time? Check with your local utility company or installer and see if they offer lower rates at particular times of the day. If a lower rate is offered, try setting your connect/disconnect times to coincide with the utility companies lower rates to save you money.

• **02D AC In – Volts DC**: Based on the inverter’s battery voltage, the **AC In – Volts DC** settings determine when the inverter automatically connects and disconnects the incoming utility power.
 ◇ **Connect** – This setting determines at what DC voltage the inverter/charger connects to incoming AC and transfers the loads from the inverter battery power to the utility grid. The transfer occurs only if the battery voltage remains below this setting for 10 seconds.
 Default settings: 11.0 VDC (12v), 22.0 VDC (24v), 44.0 VDC (48v)
 Ranges: 9.0-15.9 VDC (12v), 18.0-31.8 VDC (24v), 36.0-63.6 VDC (48v)
 ◇ **Disconnect** – Once the inverter has connected to the incoming AC—based on the VDC **Connect** setting—this setting determines at what DC voltage the inverter/charger disconnects from incoming AC and resumes powering the AC loads from the inverter’s battery power.
 Default settings: 14.1 VDC (12v), 28.2 VDC (24v), 56.4 VDC (48v)
 Ranges: 9.1-16.0 VDC (12v), 18.2-32.0 VDC (24v), 36.4-64.0 VDC (48v)

Info: The **02D AC In – Volts DC (Connect and Disconnect)** settings are not temperature-compensated.

Info: If you have a ME-BMK battery monitor, use the **AC In – SOC** feature instead of the **02D AC In – Volts DC** feature. The **AC In – SOC** feature takes temperature compensation into account and is a more accurate way to identify when your battery is discharged/charged—to determine when to transfer to/from utility power.

What is the AC In Volts DC feature? This feature allows the inverter system to automatically switch between utility connected and standalone battery operation—based on the VDC voltage (i.e., battery) to the inverter. When using this feature, the inverter loads are powered from the battery—which is normally charged from an energy source such as solar, wind, and/or hydro. In the event the energy source cannot keep the battery voltage from falling, once the battery voltage drops to the **Connect** volts setting the inverter connects to the utility to continue powering the loads connected to the inverter’s output (and to charge the battery). When the energy source can again deliver enough power to raise the battery voltage to the **Disconnect** volts setting, the inverter disconnects from the utility and again powers the inverter loads from the battery.
Setup

Where should I set AC In – Volts DC? Check with your battery manufacturer to determine the correct settings for your batteries. Typically, battery manufacturers do not recommend discharging the batteries below 50%, which when related to a voltage setting is approximately 12.0-12.2 VDC, 24.0-24.4 VDC and 48-48.8 VDC for 12, 24 and 48-volt batteries, respectively. In order to protect the batteries from over-discharging, set the connect voltage setting to 12.2 VDC, 24.4 VDC, or 48.8 VDC, respectively.

Set the disconnect voltage setting higher than the absorb voltage setting in order to reduce cycling of the system. A setting higher than the absorb voltage requires the energy source (e.g., solar, wind, etc.) to raise the DC voltage above the charger settings. This ensures the battery gets at least an 80-85% charge (preferably 100%) before the AC is disconnected and the inverter resumes powering from the batteries.

• 02E AC In – SOC: This setting determines when the inverter automatically connects and disconnects the incoming utility power based on the SOC of the inverter battery bank.

 Note: Requires a ME-BMK battery monitor to provide SOC values to the inverter.

 ◊ Connect – This setting determines at what battery SOC% the inverter connects to incoming utility power and transfers the loads from the inverter battery power to the utility grid.

 Default setting: 80% SOC
 Range: 20-99%

 ◊ Disconnect – Once the inverter has connected to the incoming AC—based on the SOC Connect setting—this setting determines the battery SOC% at which the inverter disconnects from incoming utility power and resumes powering the loads from the inverter’s battery power.

 Default setting: 100% SOC
 Range: 21-100%

 Info: The transfer to/from incoming AC occurs immediately when the Connect SOC or Disconnect SOC setting is reached.

 Info: A ME-BMK is required in order to use the 2E AC In – SOC setting. If this setting is selected and there is no ME-BMK installed in the system, or if a valid SOC number is not displayed under the METER/05 BMK Meters/05A SOC menu (i.e., Think’n, No Comm, Pwr-up Fault and Factory Fault are not valid SOC numbers), then the inverter will not connect to the incoming AC power.

What is the AC In – SOC feature? This feature allows the inverter system to automatically switch between utility connected and standalone battery operation based on the inverter’s battery SOC that is provided by the ME-BMK battery monitor. When using this feature, the inverter loads are normally powered from the battery and a solar array (or other energy source such as wind, and/or hydro). In the event the solar array cannot deliver enough power and the battery’s SOC drops to the Connect SOC setting, the inverter connects to the utility to continue powering the loads connected to the inverter’s output and to charge the battery. Once the solar array can again deliver enough power to charge the battery to the Disconnect SOC setting, the inverter disconnects from the utility and again powers the inverter loads from the battery.

Where should I set AC In – SOC? Check with your battery manufacturer to determine the correct settings for your batteries. For the Connect SOC setting, most manufacturers do not recommend discharging the batteries below 50% to maintain the life of the battery. For the Disconnect SOC setting, set it to a value to get at least an 80-85% charge (preferably 100%) before the AC is disconnected and the inverter resumes powering from the batteries.

 Info: When using AC In – SOC, ensure the SETUP: 03D Absorb Done SOC setting is higher than the Disconnect SOC setting, or the inverter may not disconnect from the incoming AC because the battery may not be charged to a high enough SOC level to meet the Disconnect SOC setting.
Notes on using the AC In feature based on VDC or SOC:

1. The AC In –VDC and AC – In SOC features allow you to optimize the use of another energy source (i.e., solar, wind, and/or hydro), and only allow the use of the utility power when the energy source is not able to keep up with the load demands under normal conditions (e.g., cloudy day).

2. The energy source should be sized to meet the daily power requirements of the loads being operated under normal conditions. Otherwise, the inverter would be connected to utility power most of the time, resulting in excessive energy consumption from the utility.

3. The inverter system should not be configured for use in a utility back-up scenario, otherwise the battery may be in a highly discharged state when grid power goes down—preventing the critical loads from running during a power outage.

4. The incoming AC is normally disconnected from the inverter. The Connect setting (VDC or SOC) must be reached before the inverter will allow the incoming AC to connect.

- **02F Inverter Always Power-Up When DC is Connected**: Forces the inverter to turn on when DC voltage to the inverter is applied. Allows the inverter to power up and provide AC power automatically once the battery is connected to the inverter.

 Default setting: NO
 Range: YES, NO

What is the Always Power-Up feature? Normally, when DC power is connected to the inverter, the user is required to press the inverter’s or the router’s power button to turn on the inverter. If the Always Power-Up feature is activated by selecting “YES”, then whenever DC power is connected, the inverter is automatically turned on and starts searching or inverting—depending on the SETUP button’s 02 Inverter Setup/02A Search Watts setting. Once automatically turned on, the power button on the inverter or router can be used to turn the inverter on or off.

Why use the Always Power-Up feature? Some people are familiar with Uninterruptable Power Supplies (UPS) that power-up automatically when DC power is connected. The Always Power-Up feature allows the inverter to power-on similar to an UPS.

- **02G Inverter Threshold to Start Parallel (or, the “parallel threshold”):** This setting is used for inverters in a parallel-stacked inverter system, and determines when the slave inverters turn on as a result of the percentage of power being provided by the master inverter

 Default setting: 60%
 Range: OFF, 30%-90% (10% increments)

Info: Ensure the parallel threshold setting is not too high or the master inverter may reach its full output capacity and overload before the slave inverters can turn on and assist in powering the loads.

Info: The 02G Inverter Threshold to Start Parallel feature only works with the parallel stacking inverter models (i.e., MS-PAE and MS-PE Series).

Info: When this setting is reached, all connected slave inverters turn on at the same time to deliver maximum power to the loads. After running approximately 30 seconds to stabilize the AC current, the slave inverter(s) that are not needed will shut down and the units that are still inverting will share the AC current equally.

Example: There are 3 MS4024PAE units in parallel (Master, Slave 1, and Slave 2) with a total capacity of 12kW—the parallel threshold default is set to 60%. The master inverter is running a 2000W load, which is below the 60% threshold (4000W x .6 = 2400W). A 1000W load is added for a total system load of 3000W, exceeding the parallel threshold setting of 2400W. Slave 1 and Slave 2 inverters turn on, delivering up to 12,000W total power. Within approximately 30 seconds, the system shuts down Slave 2, and the Master and Slave 1 each run 1500W (sharing the 3000W load equally between them). Now, if the 1000W load is turned off (reducing the total system load to 2000W again), Slave 1 turns off and only the Master inverter will be running the 2000W load.
Setup

Should I use the Parallel Threshold feature? Depends on the application. Most applications set a threshold level such that the connected slave inverters come on only when required to power the loads. This reduces the power drain on the batteries because the slave inverters that are not actively powering the loads are in standby. On the other hand, if you have a load larger than the capacity of the master inverter and the startup current is needed very quickly, you may need to turn the threshold setting to OFF. This ensures all the stacked inverters are always on to meet the fast startup current requirements of this large load.

Where should I set the Parallel Threshold? Depends on typical AC loads and how much time you want the master inverter to run (versus the slaves). If you want the master inverter to run as much of the loads as possible before the slave(s) turn on, then set the threshold at a higher setting. If you want the slave(s) to share more of the load, then set the threshold to a lower setting.

Example: Loads are typically under 4000W and you have a 3-inverter parallel system. You want the Master to run loads up to 3000W before the slave inverters turn on. Set the parallel threshold to 75% (4000W x .75 = 3000W). The Master inverter will now run any load up to 3000W before the slave inverters turn on. In this scenario, if a 5000W load was turned on, the slave inverters would turn on, and then Slave 2 would turn off, and the Master and Slave 1 would each run at 2500W.

SETUP: 03 Charger Setup

- **03A AC Input Amps:** This setting ensures that the combined current draw from the battery charger and the AC loads does not exceed the maximum input current that is available from the incoming AC power. This setting is used to set that maximum input current level. Whenever the incoming AC is connected and passing thru the inverter, the current from the incoming AC used to power the AC loads and charge the batteries is monitored. If this current begins to approach the **AC Input Amps** setting, the charger current is automatically reduced. This ensures the AC loads have all the available current from the incoming AC power when needed. If using a MSH-M or MSH-RE (Hybrid) inverter, the AC input settings also determine when the battery current begins to operate in parallel with the incoming AC power to support the inverter loads, known as Load Support. The Load Support feature uses additional power from the inverter’s battery to run loads greater than what the incoming AC power can run alone, and prioritizes the power of any external DC source (e.g., solar, wind, etc.) over the incoming AC power to run inverter loads. For more information, see the Load Support Mode section in the MSH-M or MSH-RE Series Owner’s Manual.

Setting for all models except MSH4024RE:

- **Set AC Input Amps**
 - Default setting: 30 Amps
 - Range: 5-60 Amps

Settings for MSH4024RE:

- **Set AC Input Amps (AC1 and AC2)**
 - Default setting: AC1 = 30 Amps, AC2 = 20 Amps
 - Ranges: 5-60 Amps

CAUTION: Unless you have an MS Hybrid Series inverter/charger—which has the Load Support feature—the **AC Input Amps** setting only limits the current to the battery, it does not limit the current to the inverter loads. If the current from the loads on the output of the inverter is greater than the circuit breaker rating on the incoming AC source, you will experience nuisance tripping.

Where should I set AC Input Amps? This setting needs to be set differently depending on your inverter/charger model—as described below:

ME, MS, and RD Series: These models connect to a single AC source and have two inputs (HOT IN 1 and HOT IN 2), but the current is only monitored on HOT IN 1. On these models—when wired as a dual-in configuration or as a single-in configuration with only the HOT IN 1 connected—the **AC Input Amps** setting should be set to the size of the AC circuit breaker that feeds the HOT IN 1 input. On these models, when wired as a single-in configuration with HOT IN 1 and HOT IN 2 jumped together, set the **AC Input Amps** setting to half (x½) the input breaker size—as half the current will pass through HOT IN 1 and the other half through HOT IN 2 simultaneously.
Setup

MS-AE and MS-PAE Series: These models connect to a single AC source and have two inputs (HOT IN 1 & HOT IN 2), with the current monitored on both inputs at the same time. Since the input is from a single AC source, both of the input currents are added, then divided in half to determine the AC Input Amps setting. If the input breaker is a dual-pole (120/240 VAC input), set the AC Input Amps setting to the value of only one of the breaker poles (i.e., 30A dual-pole = 30A setting). If the input breaker is a single-pole (120 VAC input) and connected to only one input, set the AC Input Amps setting to one-half the input breaker size (i.e., 30A single-pole = 15A setting).

MS-E, MS-PE, MSH-M and RD-E Series: These models connect to a single AC source and have one input. On these models, set the AC Input Amps setting to match the input AC circuit breaker size.

MSH-RE Series: These models can connect to two AC sources and have two inputs (AC1 & AC2), with the current monitored on each input separately. AC1 is set to the size of the utility breaker feeding the AC1 input, and the AC2 is set to the size of the generator’s breaker feeding the AC2 input.

MM, MM-AE and MMS Series (and any export version of these models): These models do not monitor current on the input, therefore cannot benefit from the AC Input Amps setting or feature. On these models, even though the AC Input Amps setting may display and allow selection/adjustment, this setting will not do anything to reduce the battery charger current.

Info: If you are supplying two AC sources (utility and generator) to the inverter’s single input through an AC transfer switch, adjust the AC Input Amps setting to the smaller AC circuit breaker side of the two AC sources.

Info: The AC Input Amps setting is dependent on the stability of the AC source. If using a generator, factors such as altitude and output voltage regulation may require a lower setting than the generator’s circuit breaker size. For best performance, lower the AC Input Amps setting to 1/3 of the generator’s rated capacity, and then while the generator is heavily loaded, gradually increase the setting as high as possible; but ensure the voltage level stays above the 03B Low VAC Dropout setting.

• 03B Low VAC Dropout: Selects the minimum AC voltage that must be present on the input before the inverter/charger connects to the AC input and switches from Inverter mode to Standby mode. This setting also determines the lowest AC voltage that is allowed before the charger disengages and the inverter (if enabled) resumes powering the AC loads from the inverter's battery power—to protect AC loads during utility outages.

Example: If the Low VAC Dropout setting is 60 VAC, then the AC input voltage must be above 60 volts before the inverter connects and switches from Inverter mode to Standby mode.

Settings for all models except MSH4024RE:

◊ Set Low VAC Dropout (AC1 only) – Sets at what AC voltage—from the HOT IN 1 to NEUT IN 1 terminals—the inverter/charger will connect to or disengage from the incoming AC.
 Default setting: 80 VAC (150 VAC for export models)
 Range: 60-100 VAC, UPS Mode (110-190 VAC, UPS Mode for export models)

Settings for MSH4024RE models:

Info: The MSH4024RE is a dual input source inverter/charger having two independent AC source inputs (AC1/GRID and AC2/GEN) with independent VAC dropout settings for each input. The Set Low VAC Dropout screen only displays both the AC1 and AC2 fields if the router is connected to the MSH4024RE.

◊ Set Low VAC Dropout (AC1 and AC2) – The AC1 setting determines at what AC voltage—from the AC1 to NEUT terminals—the inverter/charger will connect to or disengage from the incoming AC. The AC2 setting determines at what AC voltage—from the AC2 to NEUT terminals—the inverter/charger will connect to or disengage from the incoming AC.
 Default setting: AC1=80 VAC, AC2=70 VAC
 Range: 60-100 VAC, UPS Mode*

* – Do not use UPS Mode as the AC2 setting if using a generator as your AC source.
Setup

Where do I set my VAC Dropout? It depends on the application and what you are using as the AC source. The settings not only look at the incoming voltage level to determine when to transfer, but also determine how quickly the charger disconnects and starts inverting based on the fluctuations of the incoming AC voltage.

Dropout = 60 VAC to 100VAC (Export inverter models: Dropout = 110 VAC to 190 VAC)

- Use a Low VAC Dropout setting from 60 VAC to 100 VAC (export models use a dropout from 110 VAC to 190 VAC) when the AC source may have fluctuations in RMS voltage. These settings attempt to prevent the charger from disengaging unnecessarily due to poor quality voltage, and are highly recommended if using a generator for charging. The transfer time from Standby mode to Inverter mode is >16 milliseconds when using these settings.

Dropout = UPS Mode – Use the UPS Mode setting when the AC source is well regulated above 105 VAC (200 VAC for export inverter models), and the inverter loads are sensitive to voltage fluctuations. This setting is intolerant of voltage fluctuations and will provide a quick transfer. The transfer time from Standby mode to Inverter mode is ≤16 milliseconds when using this setting.

Info: If you get nuisance AC disconnects, either change the setting to 100 VAC or less (export models 190 VAC or less), or obtain a better voltage-regulated AC source.

- **03C Battery Type:** This setting selects the battery type, which determines the battery charge profile and ensures the batteries are receiving the proper charge voltage. The charge voltage settings are fixed when using the GEL, Flooded, AGM1, or AGM2 selections, but can be adjusted if using the CC/CV or Custom selections.

 Default setting: Flooded

 Range: AGM1, AGM2, Flooded, GEL, CC/CV, Custom

 ◇ **Set Battery Type (GEL, Flooded, AGM1, or AGM2)** – When the battery type selection is GEL (for Gel batteries), Flooded (for liquid lead acid batteries), AGM1 (for Lifeline AGM batteries), or AGM2 (for East Penn/Deka/Discover/Trojan AGM batteries), the charge voltage level for the Absorption, Float, and EQ charge modes are fixed and shown in Table 3-1—depending on the battery type selected and the nominal inverter battery voltage.

 Info: The voltage settings shown in Table 3-1 are based on the Battery Temperature Sensor (BTS) at a temperature of 77° F (25° C), or not connected. If the BTS is connected, the actual charge voltage will increase if the temperature around the BTS is below 77° F (25° C), and decrease if higher than 77° F (25° C). This ensures the batteries receive the correct charge voltage regardless of temperature.

 Table 3-1, Battery Type to Charge Voltages (Fixed Voltage)

<table>
<thead>
<tr>
<th>Battery Type</th>
<th>Inverter Voltage</th>
<th>Absorption Voltage</th>
<th>Float Voltage</th>
<th>Equalization Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEL</td>
<td>12 VDC</td>
<td>14.1 VDC</td>
<td>13.6 VDC</td>
<td>14.1 VDC¹</td>
</tr>
<tr>
<td></td>
<td>24 VDC</td>
<td>28.2 VDC</td>
<td>27.2 VDC</td>
<td>28.2 VDC¹</td>
</tr>
<tr>
<td></td>
<td>48 VDC</td>
<td>56.4 VDC</td>
<td>54.4 VDC</td>
<td>56.4 VDC¹</td>
</tr>
<tr>
<td>Flooded</td>
<td>12 VDC</td>
<td>14.6 VDC</td>
<td>13.4 VDC</td>
<td>15.5 VDC</td>
</tr>
<tr>
<td></td>
<td>24 VDC</td>
<td>29.2 VDC</td>
<td>26.8 VDC</td>
<td>31.0 VDC</td>
</tr>
<tr>
<td></td>
<td>48 VDC</td>
<td>58.4 VDC</td>
<td>53.6 VDC</td>
<td>62.0 VDC</td>
</tr>
<tr>
<td>AGM¹</td>
<td>12 VDC</td>
<td>14.3 VDC</td>
<td>13.1 VDC</td>
<td>15.5 VDC</td>
</tr>
<tr>
<td></td>
<td>24 VDC</td>
<td>28.6 VDC</td>
<td>26.2 VDC</td>
<td>31.0 VDC</td>
</tr>
<tr>
<td></td>
<td>48 VDC</td>
<td>57.2 VDC</td>
<td>52.4 VDC</td>
<td>62.0 VDC</td>
</tr>
<tr>
<td>AGM²</td>
<td>12 VDC</td>
<td>14.5 VDC</td>
<td>13.5 VDC</td>
<td>14.5 VDC¹</td>
</tr>
<tr>
<td></td>
<td>24 VDC</td>
<td>29.0 VDC</td>
<td>27.0 VDC</td>
<td>29.0 VDC¹</td>
</tr>
<tr>
<td></td>
<td>48 VDC</td>
<td>58.0 VDC</td>
<td>54.0 VDC</td>
<td>58.0 VDC¹</td>
</tr>
</tbody>
</table>

Note¹: Voltage same as absorption voltage—to prevent equalization.

Note²: Charge voltages for Concord (Lifeline Series) AGM batteries.

Note³: Charge voltages for East Penn, Deka, Discover and Trojan AGM batteries.
Setup

◊ **Set Battery Type (CC/CV)** – The **CC/CV** selection provides a 2-stage (Constant Current/Constant Voltage) charging cycle with an adjustable charge voltage and output current. **Note:** CC/CV settings only display if CC/CV has been selected from the 03 Battery Type menu.

Info: If **CV/CC** has been selected from the **03C Battery Type** menu, the following menus are no longer accessible and display “**CC/CV Controlled**” when selected: **03D Absorb Done**, **03E Max Charge**, **03F Final Charge**, **03G Days to remind when to EQ**. This is to prevent charging conflicts that could occur while in the CC/CV profile.

CAUTION: Whenever the CC/CV battery type is selected, some settings—within menus that are no longer accessible—are internally linked to the CC/CV settings and can be automatically changed. Because settings can be automatically changed once CC/CV has been selected, if a different battery type is selected, then all charge settings must be reviewed to ensure they are correct for the new battery type selection.

- **Max Chg Amps** – Sets the maximum amperage allowed to charge the batteries during the CC/CV charge cycle. This setting is provided to limit the charge current to the battery bank, which helps prevent battery overheating caused by charging at too high a charge rate.
 Default: Max Charge Amps = 200A
 Range: 20 – 990 ADC

- **CV Chg Volts** – Sets the voltage level at which the charger will hold the batteries during the Constant Voltage cycle.
 Default: CV Chg Volts = 13.8 VDC (12v), 27.6 VDC (24v), 55.2 VDC (48v)
 Range: OFF, 12.0-16.0 VDC (12v), 24.0-32.0 VDC (24v), 48.0-64.0 VDC (48v)

 Info: If the BMK (Battery Monitor Kit) is connected, the DC amps value determined by the BMK (under METER: 05C DC Amps-BMK) will be used by the Max Chg Amps setting instead of the inverter’s DC calculated current (shown under METER: 01B Inv/Chg DC Amps)—as it is more accurate (+/- .1 ADC).

CV Charge Done Time, CV Charge Done Amps, or Hold CV Charge Volts selections: These selections determine when the second stage of charging (Constant Voltage) is finished. If using the **CV Charge Done Time** or **CV Charge Done Amps** selections, once the constant voltage charge cycle is finished, it transitions to a Silent charge stage. During the Silent charge mode, charging is automatically stopped, but battery voltage is still monitored. The charger remains “Silent” until the battery voltage drops to the **Set DC Volts to Recharge** setting, at which time the charger will start another Constant Current/Constant Voltage charge cycle (see Figure 3-12).

The **Hold CV Chg Volts** selection holds the battery in the constant voltage charge cycle voltage at the **CV Chg Volts** setting indefinitely (see Figure 3-13).

Default: CV Charge Done Time

- **CV Chg Done Time** – The **CV Charge Done Time** selection is used when a specific time is selected to be the best solution for determining when the batteries are fully charged and the Constant Voltage stage needs to end.
 * **Set CV Chg Done Time** – This setting determines how long the charger will hold the battery voltage at the **CV Chg Volts** setting—based on a set time period. When using time, the battery bank size will typically determine the length of the **CV Charge Done Time** setting. The larger the battery bank, the longer the time needed to ensure a full charge to the batteries. The charger transitions to the Silent charge mode after the battery voltage has been at the **CV Chg Volts** setting for the selected time. Refer to Table 3-2 to assist you in selecting the **CV Charge Done Time** setting based on the AHR capacity of your battery bank.
 Note: After choosing the **Set CV Charge Done Time**, the **Set Max CC/CV Charge Time** and **Set DC Volts to Recharge** settings must be determined.

 Default: Time = 2.0 Hrs
 Range: 0.1-25.5 Hrs

- **CV Chg Done Amps** – The **CV Charge Done Amps** setting is used when the DC amperage supplied to the batteries (i.e., done amps) determines when the batteries are fully charged and the Constant Voltage stage needs to end.
Figure 3-12, CV Charge Done Time/Amps Charge Stages

Set CV Charge Done Amps – This setting determines how long the charger will hold the battery voltage at the CV Chg Volts setting—based on a minimum current setting (i.e. done amps). During the Constant Voltage charge mode, as the battery charges, the current from the charger slowly decreases. When this current decreases below the Set CV Charge Done Amps setting, the charger transitions to the Silent charge stage. Most battery manufacturers use a specific formula to determine the done amps that indicate a full charge for their particular type of battery. The formula used by most manufacturers to absorb the batteries is C/20, where C=Battery Bank’s Total Amp Hours. Basically, they take approximately 5% of the total battery bank size, and consider the battery totally charged when the charger’s done amps drops to this level. Continuing to charge past this level may possibly overcharge the batteries. Check with your battery manufacturer to find out what the correct return amp settings are for your batteries. **Note:** After choosing the Set CV Charge Done Amps selection, the Set Max CC/CV Charge Time and Set DC Volts to Recharge settings must be determined.

Default: Amps = 20 ADC
Range: 0-250 ADC

Info: It is highly suggested that you install a battery monitor if the CV Charge Done Amps setting is used. If a battery monitor is not installed, the CV Charge Done Amps setting relies on the METER menu’s 01B Inv/Chg DC Amps value to determine when to transfer out of the Constant Voltage charge mode. When a battery monitor kit (ME-BMK/ME-BMK-NS) is installed, the CV Charge Done Amps setting relies on the METER menu’s 05C DC Amps-BMK value to determine when to transfer out of the Constant Voltage charge mode. This is the most accurate DC amperage measurement. The DC amps reading from the battery monitor is accurate to +/ – .1 ADC.

Info: Setting the CV Charge Done Amps value to 0 (zero) will keep the charger in the Constant Voltage charge mode until the Set Max CC/CV Time setting (under SETUP: 03C Battery Type/CC/CV) is reached.

Info: When using the CV Charge Done Amps setting, the charger will stay in the Constant Voltage charge mode for a minimum of two minutes—even if the Done Amps current is below the CV Charge Done Amps setting.

Info: If DC loads are connected directly to the batteries, it is not recommended that you use the CV Charge Done Amps setting. DC loads cause the charger to increase the amperage delivered to the battery bank in order to charge the batteries and to run the DC loads. This scenario could result in overcharging the batteries since the done amps reading will be skewed by the DC loads.
Setup

- **Set Max CC/CV Time** – This setting is a safety feature that ensures abnormal conditions do not cause the charger to hold batteries at a high voltage for a prolonged period of time. This menu sets a maximum time the charger is allowed to operate in either the Constant Current or Constant Voltage charge modes. If the charger reaches the maximum charge time setting, it will transition to the Silent charge stage. If using the OFF setting, the charger will stay in the Constant Current and Constant Voltage charge modes indefinitely.

 Default: Time = 12.0 Hrs
 Range: OFF, 0.1-25.5 Hrs

- **Set DC Volts to Recharge** – This setting determines the DC voltage set-point to which the batteries are allowed to fall—while the charger is in the Silent charge cycle—before the charger restarts and recharges to the CV Chg Volts setting. This setting should be at the lowest DC volts level that you want the batteries to fall before starting a new charge.

 Default: DC Volts to Recharge = 12.0 (12v), 24.0 Volts (24v), 48.0 Volts (48v)
 Range: 12.0-16.0 Volts (12v), 24.0-32.0 Volts (24v), 48.0-64.0 Volts (48v)

- **Hold CV Chg Volts** – This setting holds the battery voltage at the CV Chg Volts setting. This is for a system that requires a constant charge voltage to be present at all times.

![Figure 3-13, Hold CV Charge Volts CC/CV Charge Stages](image)

- **Set Battery Type (Custom)** – This selection allows you to individually adjust the float, absorb, and equalization charge voltage settings and to set an equalization time for your batteries. The following Custom battery settings display only if Custom has been selected from the 03 Battery Type menu. Use these settings to determine the battery’s absorption, float, and equalization voltages, and the maximum amount of time spent equalizing.

 CAUTION: To avoid damage during battery charging or equalization, consult the battery manufacturer to ensure the best charge settings are used for your type of batteries.

- **Absorb Volts** – Sets the level at which the charging voltage is held constant during an Absorption cycle.

 Default: 14.4 Volts (12v), 28.8 Volts (24v), 57.6 Volts (48v)
 Range: 12.0-16.0 Volts (12v), 24.0-32.0 Volts (24v), 48.0-64.0 Volts (48v)

- **Float Volts** – Sets the level at which the charging voltage is held constant during a Float cycle.

 Default: 13.2 Volts (12v), 26.4 Volts (24v), 52.8 Volts (48v)
 Range: 12.0-16.0 Volts (12v), 24.0-32.0 Volts (24v), 48.0-64.0 Volts (48v)
Setup

- **EQ Volts** – Sets the level at which the charging voltage is held constant during an Equalization cycle. **Note:** Cannot be set lower than the Absorb Volts setting, or more than 2 volts (12v systems), 4 volts (24v systems), or 8 volts (48v systems) above the Absorb Volts setting.

 Default: 15.6 Volts (12v), 31.2 Volts (24v), 62.4 Volts (48v)
 Range: 12.0-16.0 Volts (12v), 24.0-32.0 Volts, 48.0-64.0 Volts (48v)

- **EQ Time** – Sets the time (duration) the battery will charge at the **EQ Volts setting**.

 Default: 4.0 Hrs
 Range: 0.1-25.5 Hrs

Info: The timer for the **EQ Time** setting (SETUP: 03C Battery Type/Custom menu):

- Counts when EQ is enabled and the voltage is close to the **EQ Volts** setting (≥0.1v/12-volt systems, ≥0.2v/24-volt systems, or ≥0.4v/48-volt systems).
- Pauses when in Charger Standby.
- Clears when EQ is finished, battery goes to Bulk/Absorb or Float, or EQ is stopped.

- **03D Absorb Done:** This setting identifies whether time, amps, or SOC are used to determine when the Absorption charge stage is finished and transitions to the final charge stage (see **03F Final Charge Stage**) afterwards. Absorption is the second stage of the battery charge process that attempts to fully charge the batteries.

 Note: If “CC/CV Controlled” displays on this menu’s screen, you will not be able to adjust the settings as “CC/CV” has been selected as the battery type from the 03C Battery Type menu.

 Default: Absorb Done Time

 CAUTION: If the Absorption stage is short or terminated, the batteries may not receive a full charge. In contrast, if the Absorption stage is too long the batteries may be overcharged. Either scenario may lead to damage to the batteries. Contact your battery manufacturer to ensure the best charge settings are used for your type of batteries.

- **Set Absorb Done Time** – **Set Absorb Done Time** is used when a specific time is determined to be the best solution for ending the Absorption stage. When using time, the battery bank size will typically determine the length of the **Absorb Done Time** setting. The larger the battery bank, the longer the absorb time needed to ensure a full charge to the batteries. Taking specific gravity readings of the batteries and adjusting the absorb time may be needed in order to obtain the appropriate absorb time for your battery type and battery bank size. Use Table 3-2 to select the **Absorb Done Time** setting based on the amp-hr capacity of your battery bank.

 Default setting: Absorb Done Time = 2.0 Hrs
 Range: 0.1-25.5 Hrs

Table 3-2, Battery Amp/Hrs Capacity to Suggested Absorb Time

<table>
<thead>
<tr>
<th>Battery AmpHrs Capacity</th>
<th>Suggested Absorb Time</th>
<th>Battery AmpHrs Capacity</th>
<th>Suggested Absorb Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 to 300</td>
<td>60 minutes</td>
<td>1310 to 1500</td>
<td>240 minutes</td>
</tr>
<tr>
<td>310 to 500</td>
<td>90 minutes</td>
<td>1510 to 1700</td>
<td>270 minutes</td>
</tr>
<tr>
<td>510 to 700</td>
<td>120 minutes</td>
<td>1710 to 1900</td>
<td>300 minutes</td>
</tr>
<tr>
<td>710 to 900</td>
<td>150 minutes</td>
<td>1910 to 2100</td>
<td>330 minutes</td>
</tr>
<tr>
<td>910 to 1100</td>
<td>180 minutes</td>
<td>2110 to 2300</td>
<td>360 minutes</td>
</tr>
<tr>
<td>1110 to 1300</td>
<td>210 minutes</td>
<td>2310 to 2500</td>
<td>390 minutes</td>
</tr>
</tbody>
</table>

Info: Range of the **Absorb Done Time** setting is dependent on the inverter’s compatibility level. With a compatibility level of ≥4.0, the available range is 0.1-25.5 hrs. However, if the compatibility level is less than 4.0, even though you can adjust the setting from 0.1-25.5 hours, the available range may not be recognized by the inverter, and causes the charger to revert to the default setting of 2.0 hours. See Appendix B for more info.
Set Absorb Done Amps – This setting is used when the DC amperage supplied to the batteries determines when the batteries are fully charged. During Absorb Charge mode—as the battery charges—the current required by the battery decreases. “Done amps” refers to when the done amps decreases below the Absorb Done Amps setting continuously for two minutes, the charger transfers from the Absorption charge cycle to the final charge stage (see 03F Final Charge Stage). Most battery manufacturers use a specific formula to determine the done amps that indicate a full charge for their particular type of battery. The formula used by most manufacturers to absorb the batteries is C/20, where C=Battery Bank’s Total Amp Hours. Basically, they take approximately 5% of the total battery bank size, and consider the battery totally charged when the charger’s done amps drops to this level. Continuing to charge past this level may possibly overcharge the batteries. Check with your battery manufacturer to find out what the correct return amp settings are for your batteries.

Default setting: Amps = 20 ADC
Range: 0-250 ADC

Info: Setting the Absorb Done Amps value to 0 (zero) will keep the charger in the Absorption Charge mode until the 03E Max Charge: Time setting is reached.

Info: When using Absorb Done Amps, the charger stays in Absorption Charge mode for a minimum of 2 mins—even if the done amps is below the Absorb Done Amps setting.

Info: If DC loads are connected to the batteries, the Absorb Done Amps setting should not be used. In order to charge the batteries—plus run the DC loads—the charger must increase the current delivered to the battery bank. This scenario could result in overcharging the batteries since the done amps reading will be skewed by the DC loads.

Info: It is highly suggested that you install a battery monitor (ME-BMK or ME-BMK-NS) if this setting is used. If a battery monitor is not installed, this setting relies on the METER menu’s 01B Inv/Chg DC Amps value to determine when to transfer out of Absorption Charge mode. When a battery monitor is installed, the Absorb Done Amps setting relies on the METER menu’s 05C DC Amps–BMK value to determine when to transfer out of Absorption Charge mode. This is the most accurate DC amperage measurement.

Set Absorb Done SOC – This setting can be used if a battery monitor kit is installed, and you want to use the SOC (State of Charge) of the battery bank to determine when the batteries are fully charged. During the Absorption Charge mode, once the METER/05 BMK Meters/05A SOC menu reaches the Set Absorb Done SOC setting, the charger transfers to the final charge stage (see 03F Final Charge Stage).

Note: SOC is the best way to determine when the batteries are fully charged—any DC loads or other charge sources connected to the battery bank will not affect the SOC reading.

Default setting: Absorb Done SOC = 100%
Range: 50-100%

Info: A ME-BMK is required in order to use this setting. If the Absorb Done SOC setting is selected and there is no ME-BMK installed in the system, or if there is not a valid SOC number displayed under the METER/05 BMK Meters/05A SOC menu (i.e., Think'n, No Comm, Pwr-up Fault, or Factory Fault are not valid SOC numbers), then the charger uses the SETUP: 03D Set Absorb Done Time setting—even if this setting is not enabled—to determine how long the charger stays in the Absorption Charge mode.

Info: If the Absorb Done SOC setting is used when charging from a generator source, then it is recommended that a setting of less than 100% be used (usually around 90% is acceptable). Running the generator higher than 90% is sometimes considered an inefficient use of fuel. However, if a setting lower than 100% is used, then the batteries should be charged to 100%, at least once a week, to make sure damage is not done to the batteries by not bringing them to a full charge state.

Info: If the Absorb Done SOC setting is active, the charger will go into Bulk Charge mode each time AC is connected.
• **03E Max Charge**: This menu sets the maximum charge rate allowed to charge the batteries during Bulk, Absorption, Float, and Equalize charging, as well as sets a maximum time the charger is allowed to operate in either the Bulk or Absorption Charge mode.

Note: If "CC/CV Controlled" displays on this menu’s screen, you will not be able to adjust the settings as "CC/CV" has been selected as the battery type from the 03C Battery Type menu.

◊ **Set Max Charge: Rate** – This setting is the maximum charge rate allowed to charge the batteries during Bulk, Absorption, Float, and Equalize charging; and is provided to limit the charge rate to the battery bank to prevent battery overheating caused by charging at too high a charge rate. A 100% setting uses the maximum charging capability of the inverter/charger to charge the batteries if needed, while a 0% setting minimizes the charging current while continuing to allow pass-thru current.

The **Max Charge: Rate** setting is provided as a percentage of the inverter/charger’s maximum charging capability. Refer to the label on the side of the inverter (or owner’s manual) to determine the inverter’s maximum charge rate. Divide the maximum current required by the inverter’s maximum charging capability to determine the percentage needed to limit the charge rate to your battery bank.

Default setting: Max Charge Rate = 100%

Range: 0-100%

Example: The max charge rate of the inverter/charger is 120 amps. You need to limit the charge rate to 72 amps. Divide 72 by 120 = 0.6 (60%), choose the Max Charge Rate = 60%.

Info: If the Maximum Charge: Rate setting is 0%, the topology of the Magnum inverter (when connected to AC source) overrides the 0% setting and starts charging if battery voltage is: <12 VDC (12-volt models), <22 VDC (24-volt), or <44 VDC (48-volt).

How do I determine where to set my Maximum Charge Rate? Generally, set to a C/5* rate (C = total AH capacity of battery bank—using the 20-hour AH rate). The C/5 rate is usually used when the objective is to quickly charge the batteries (i.e., 400 AH ÷ 5 = 80 amp maximum charge rate). A lower rate such as C/20* is used when the batteries need to be charged as slow as possible.

* C/5 or C/20 rate – charge rates are commonly expressed as a ratio of the total amp-hour (AH) capacity of the battery bank. For example, with a 400 AH battery bank (C = 400), the C/5 charge rate is 80 A (400/5 = 80 A).

CAUTION: The C/5 or C/20 charge rate recommendations are not requirements on how you should set your battery charge rate. For specific charge rate requirements, refer to your battery manufacturer.

CAUTION: If multiple inverter/chargers are used on a single battery bank, you must ensure that the total charge rate from all inverter/chargers is limited to the maximum charge rate needed for your battery bank. The Max Charge Rate setting only limits the charging on each inverter/charger individually, not on all inverter/chargers.

◊ **Set Max Charge: Time** – The Max Charge: Time setting is a safety feature that ensures abnormal conditions will not cause the charger to hold batteries at a high voltage for a prolonged period of time. This menu sets a maximum time the charger is allowed to operate in either the Bulk, Absorption, or Equalization charge modes. If the charger reaches the maximum charge time setting, it will transition to the final charge stage as set in the SETUP button’s 03F Final Charge Stage.

Default setting: Max Charge: Time = 12.0 Hrs

Range: Off, 0.1-25.5 Hrs

Info: If the time the charger has been in the Bulk, Absorption, or EQ charge modes has exceeded the Set Max Charge: Time setting, the CHG LED indicator blinks and “Max Charge Time” scrolls across the LCD display.

Info: The Max Charge Time safety feature uses the time accumulated under the METER: 03A Charge Time display to determine how long the charger has been in the Bulk, Absorption, or EQ charge modes.
Where should I set my Max Charge Time? In order to ensure a complete charge cycle is accomplished, adjust the Max Charge: Time setting to a time period that will normally be longer than the settings in the following SETUP menus: 03D Absorb Done Time, Absorb Done Amps, and Absorb Done SOC. The Max Charge: Time setting has priority over these menus and will stop the charge cycle once that setting is satisfied.

Example: The Max Charge: Time setting is 6 hours, but the Absorb Done Time setting is 8 hours. After 6 hours in the absorption charge cycle, the charger transitions to the Final Charge stage.

- **03F Final Charge Stage:** The Final Charge Stage setting determines what charge stage(s) occurs after the absorption charge stage has finished.

 Note: If “CC/CV Controlled” displays on this menu’s screen, you will not be able to adjust the settings as “CC/CV” has been selected as the battery type from the 03C Battery Type menu.

 Default setting: Final Charge Stage = Multi-Stage

 Range: Multi-Stage, Float, Silent

 ◇ **Set Final Charge Stage = Multi-Stage** – The Multi-Stage setting transitions from the Absorption charge stage to Float charge stage. Once in the Float stage for four hours with no DC load on the batteries, the charger will enter the Full Charge stage (i.e., Battery Saver mode). In Full Charge mode, the charger automatically stops charging but is still on and actively monitoring the battery voltage. The charger will remain in the Full Charge stage until the battery voltage drops below 12.7 VDC for 12-volt batteries (25.4 VDC for 24-volt batteries, and 50.8 VDC for 48-volt batteries), at which time it will return to the Float stage. The charger will continue to cycle between Float and Full Charge as long as incoming AC is available. See Figure 3-14.

 Note: These battery voltages are the fully charged voltages of a battery at rest.

 Info: When Multi-Stage is selected and the charger goes to Full Charge mode, if another charge source (such as PV or wind) is charging the batteries above the fully charged voltage, the charger will remain in the Full Charge stage.

Why should I use Multi-Stage? Multi-Stage is the most commonly used charge mode. It is suitable for most applications and assures a full charge to the batteries, without overcharging. If there is another alternate charge source charging the batteries (PV, wind or hydro), then Multi-Stage mode uses the inverter/charger to complete a full charge. The inverter/charger transitions to Full Charge mode, and the alternate charge source then maintains the battery voltage. If the alternate source is unable to maintain the voltage, the charger enters Float mode for another 4-hour period. The Full Charge feature in the Multi-Stage mode also helps reduce water consumption in flooded batteries when they are left in the charge mode for extended periods, such as in a backup power application.

 ◇ **Set Final Charge Stage = Float** – The Float stage is a maintenance charge mode that maintains a constant voltage—while delivering up to the maximum rated current of the charger in order to power any DC loads connected to the batteries. Most 3-stage chargers finish the charge mode in Float, and remain in Float as long as an AC source is available on the input of the charger. The float voltage is determined by the battery type selected in the 03C Battery Type menu. Unlike Multi-Stage mode, in Float mode there is no Full Charge feature. See Figure 3-15.

Why should I use the Float Charge Stage? Float mode is typically used when the charger is the only charge source connected to the batteries. This mode will maintain the batteries at the float voltage. If using flooded batteries and the charger is in float for an extended period, the water level should be checked every two to three weeks for proper levels.
Setup

Final Charge Stage: Multi-Stage

<table>
<thead>
<tr>
<th>First Stage</th>
<th>Second Stage</th>
<th>Final Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk Charging</td>
<td>Absorb Charging</td>
<td>Full Charge</td>
</tr>
</tbody>
</table>

- Max Charge Amps
- Absorb Volts
- Absorb Done (= Time, Amps or SOC)
- ReFloat Volts (restarts Float Charging for 4 hours, then back to Full Charge)

Figure 3-14, Final Charge Stage – Multi-Stage

Final Charge Stage: Float

<table>
<thead>
<tr>
<th>First Stage</th>
<th>Second Stage</th>
<th>Final Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk Charging</td>
<td>Absorb Charging</td>
<td>Float Charging</td>
</tr>
</tbody>
</table>

- Max Charge Amps
- Absorb Volts
- Absorb Done (= Time, Amps or SOC)
- Float Volts

Figure 3-15, Final Charge Stage – Float

Final Charge Stage: Silent

<table>
<thead>
<tr>
<th>First Stage</th>
<th>Second Stage</th>
<th>Final Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk Charging</td>
<td>Absorb Charging</td>
<td>Silent Bulk/Absorb Charging</td>
</tr>
</tbody>
</table>

- Max Charge Amps
- Absorb Volts
- Absorb Done (= Time, Amps or SOC)
- Rebulk Volts (restarts Bulk Charging)

Figure 3-16, Final Charge Stage – Silent

Set Final Charge Stage = Silent – If Silent mode is selected as the final charge stage, the charger stops charging once it transitions to ‘Silent’. Normally, the charger enters Silent mode after the absorption charge mode has finished, and after entering the Silent mode, the battery voltage is continuously monitored. If the batteries fall to the *Set DC Volts to Rebulk* value, the charger restarts the Bulk Charge mode and then transitions to Absorption Charge mode. After the Absorption Charge mode, the charger again transitions to Silent mode. This silent to rebulk to absorb and back to silent cycle will continue as long as it is required. See Figure 3-16.

- **Set DC Volts to ReBulk** – When *Silent* mode is selected, you must also set the DC voltage set-point where the charger restarts the Bulk Charge mode. This setting should be at the lowest DC volts you want the batteries to fall before starting a new bulk charge. Typically, the lowest DC volts the batteries are allowed to fall is 12.0 to 12.2 VDC (12-volt systems), 24.0 to 24.4 VDC (24-volt systems), and 48.0 to 48.8 VDC (48-volt systems), respectively.

 Default setting: *DC Volts to ReBulk = 12.0 VDC (12v), 24.0 VDC (24v), 48.0 VDC (48v)*

 Ranges: 12.0-16.0 VDC (12v), 24.0-32.0 VDC (24v), 48.0-64.0 VDC (48v)

Why should I use the Silent Stage? Silent mode is typically used when an alternate charge source is available and able to fully charge or finish the charge cycle after the Absorb stage. A major difference between Multi-Stage mode and Silent mode is that the Silent mode returns to Bulk mode instead of Float mode. In Silent mode you can also adjust the rebulk set-point in order to allow the alternate charge source to provide more of the battery charging.

- **03G Days to remind when to EQ:** This menu sets the number of days that must pass before the router will remind you to equalize your batteries.

 Note: If “CC/CV Controlled” displays on this menu’s screen, you will not be able to adjust the settings as “CC/CV” has been selected as the battery type from the 03C Battery Type menu.

 Default setting: *OFF*

 Range: *OFF, 1-255 Days*

Info: Once equalizing begins, the METER: 03B Days Since: EQ Chg Started timer resets to zero days.

3.3.4.1 Accessory Setup

Like the previous SETUP menu items, the accessory SETUP menus are accessed through the SETUP button and the accessory’s “Home” screen under the PORT button. However, the AGS Setup, BMK Setup, or RC Setup menus only display if the related accessory is connected and communicating with the router unless the TECH: 07 Show all Menus menu has been set to “YES”. Refer to Section 3.3.5 for more info on the TECH 07 menu. Otherwise, "No *** Present” appears when accessing any menu that uses the specific accessory.

Note: *** refers to the accessory not present (i.e., “No AGS Present”, “No BMK Present”, or “No Remote Present”).

SETUP: 04 AGS Setup

This menu is used to set up the functions related to the ME-AGS-N (Automatic Generator Start – Network version). Refer to Section 7.0 “Using an AGS Module” for detailed information on the available AGS menus using the router.

Info: For additional information on the ME-AGS-N, refer to your AGS owner’s manual (PN: 64-0039).

SETUP: 05 BMK Setup

The ME-BMK/ME-BMK-NS (Battery Monitor Kit) accurately measures the SOC (State Of Charge), battery voltage, and the DC amps of the battery bank. Refer to Section 8.0 “Using a BMK” for detailed information on the available BMK menus using the router.

Info: For additional information on the ME-BMK/ME-BMK-NS, refer to your BMK owner’s manual (PN: 64-0013).
Setup

SETUP: 06 RC Setup
A remote control can be connected to the router and used to monitor your system. Refer to Section 9.0 “Attaching a Remote Control” for information on the available remote control menus using the router.

Info: For additional information on the ME-RC or ME-ARC remote controls, refer to your remote’s owner’s manual (PN: 64-0003 for a ME-RC; PN: 64-0030 for a ME-ARC).

3.3.5 TECH Button and Menus
The TECH menu button provides access to selections that assist service technicians in troubleshooting. It provides access to system information along with an option that allows all system settings to be returned to the original factory default values. See Figure 3-17 below.

Figure 3-17, TECH Button

TECH: 01 INV Temperatures
The TECH button’s first menu displays temps of ALL the units connected to the router. The units display in the order of the port# to which they are connected (1-6). Temperatures displayed are:

- **01A INV BTS Temp** – Displays the temperature of each inverter’s Battery Temp Sensor (BTS) that is connected to the battery bank.
- **01B INV Tfmer Temp** – Displays the temperature of each inverter’s main power transformer.
- **01C INV FETs Temp** – Displays the temperature of each inverter’s Field Effect Transistors (FET).

Info: The temperatures are displayed in Celsius or Fahrenheit, as selected in the SETUP menu’s 01D Temp Display setting.

Note: You can view all three of the above temperature readings on a single port-specific display for each connected inverter (see example below).

To access the TECH button’s port-specific menus:
1. From the System Home screen (press and hold METER button for approx. 3 secs to access), press the PORT button.
2. Continue to press the PORT button until the port# with the connected inverter appears (“INV Home” displays in the lower right corner of screen).
3. Press the TECH button. The 01 INV Temperatures screen displays for the selected inverter.

Info: The remaining TECH menus can also be accessed as port-specific. However, these menus are identical in function as when accessed as ALL ports TECH menus.

Figure 3-18, Port-Specific TECH Menus
TECH: 02 Port Vers/RTR=3.1
Displays the version of all router-connected units and the port #s to which they are assigned (P1-6).

Info: The router version displays on the top line of the screen of the TECH’s versions menu item.

Info: The BMK, AGS, and the remote accessories may display a “0.0” version for several reasons. Either the accessory is not installed, there is no communication because of a bad or miswired network cable, the device is not powered, or the device is bad.

TECH: 03 AccPort Versions
The **AccPort Versions** menu displays the version of all inverter-connected accessories and the port #s to which they are assigned (P1A-6A).

TECH: 04 Fault History
This menu provides a two-screen display (only one screen display for AGS faults) of historic information for each of the last 9 inverter and AGS fault records. Info for each fault displays from the most recent fault (H1) to the previous/past faults (H2 up to H9). See Figure 3-19 for examples of inverter fault history screens, and Figure 3-20 for an example of an AGS fault history screen.

Note: If no faults are on record, the display will show “No Fault History”.

Info: All recorded fault history records will be retained (except for the “days since fault” display), even if power is removed from the router.

- **INV Faults** – Select to display a history of the last nine inverter faults.
- **AGS Faults** – Select to display a history of the last nine AGS faults.
- **Clear All Faults** – Select to clear all recorded fault history. Per directions on screen, press and hold the SELECT knob for ~ 5 seconds until the screen displays “All Fault History cleared”. You are then returned to the **04 Fault History** main menu.

![Fault History Diagram](image)

Figure 3-19, Inverter Fault History (first and second screens)

Figure 3-19 – first screen (left graphic): The top line displays the fault history number, first screen (A), and the recorded fault mode. The second line displays the status of the inverter/charger at the time of the fault. The third line displays DC battery voltage and amperage readings at the time of the fault. The bottom line displays the port that the fault occurred at, how many days ago the fault occurred, the time of the fault, and the menu in which it occurred.

Figure 3-19 – second screen (right graphic): The top line displays the fault history number, second screen (B), and the recorded fault mode. The second and third line display transformer, battery, and FETs temperatures at the time of the fault. The bottom line displays the port that the fault occurred at, how many days ago the fault occurred, the time of the fault, and the menu in which it occurred.
Setup

Figure 3-20, AGS Fault History

The top line displays the fault history number and the screen name. The second line displays the AGS status and the amount of time the generator has been running. The third line displays voltage to the AGS and the AGS temperature. The bottom line displays the port that the fault occurred at, how many days ago the fault occurred, the time of the fault, and the menu in which it occurred.

TECH: 05 SETUP PIN

This menu sets the password (PIN - Personal Identification Number) that locks/unlocks the SETUP button menus.

Why should I use the PIN feature? This feature is useful when the operation of the inverter has been set up by an experienced user or installer. Restricting access to the SETUP menus with a password can avoid any unauthorized changes to your settings by inexperienced users.

Setting a PIN (unlocked SETUP button)

If a PIN has not been set, the SETUP menus are accessible to everyone (i.e., SETUP unlocked). When you first enter the 05 SETUP PIN menu, “Set New PIN” displays on the second line. Press the SELECT knob, the “Set SETUP PIN, Change PIN 0000” menu appears. The first “0” is blinking.

From the Set SETUP PIN, Change PIN 0000 menu:

1. Rotate the SELECT knob to the desired number 0-9, and then press SELECT.
 - **Note:** A display of “0000” indicates a PIN has not been set (this is the default setting).
2. Repeat Step 1 to set the remaining 3-digits until the desired PIN displays.
3. After pressing the SELECT knob for the last digit, the PIN is set. The Set SETUP PIN menu now displays “Unlock SETUP” (blinking). Rotate the SELECT knob to access these options:
 - **Unlock SETUP** – Press SELECT to unlock the SETUP button menus. “SETUP Unlocked” displays. SETUP menus are now accessible to all.
 - **Lock SETUP** – Press SELECT to restrict access to the SETUP button menus to only those users with the new valid PIN. “SETUP Locked” displays. The new PIN must be entered to access SETUP menus.
 - **Change PIN** – Press SELECT to change the PIN. “Change PIN 0000” displays.

Entering the SETUP Menu When the PIN is Set and Locked

When you press the SETUP button and “SETUP Menu, Enter PIN= 0***” displays, this indicates that a PIN has been set and the SETUP button menus are locked. The correct PIN must now be entered in order to access the menu. If the incorrect PIN is entered, “Incorrect PIN” displays. There is no limit on how many attempts can be made to enter the correct PIN number.

From the SETUP Menu, Enter PIN= 0*** menu:

1. Rotate the SELECT knob to the correct digit, and then press SELECT.
2. Repeat Step 1 to enter the remaining three digits of the existing PIN.
3. After pressing the SELECT knob for the last digit, access to the menu is permitted.

Info: After the correct PIN has been entered, you do not need to re-enter it again to access another protected menu unless 5 minutes has passed without any button push.
Setup

Changing a PIN
You can change your PIN at any time from the TECH button menu. However, to change an existing PIN, you must first enter that PIN in order to access the *Change PIN* menu option.

From the *TECH: 05 SETUP PIN* menu:
1. Press the SELECT knob, enter the existing PIN (see the "To enter an existing PIN" procedure on the previous page).
2. Once the existing PIN is entered and you press SELECT for the last digit, the Set SETUP PIN main menu displays ("Unlock SETUP" displays blinking).
3. Rotate the SELECT knob to the *Change PIN* menu option, and then press the SELECT button. The PIN field displays "0000", with the first 0 blinking.
4. Enter the new PIN (see the "To set a PIN" procedure on the previous page).
 Note: "0000" is not a valid PIN.
5. After pressing the SELECT knob for the last digit, the new PIN is set. Select either to unlock or lock SETUP.

Info: You can override or clear a previously entered PIN. When "Enter PIN = 0***" displays, press and hold the SELECT knob until "PIN = 0000" displays (approximately 5 seconds). Enter a new PIN number as previously described.

TECH: 06 Ext Control
The *External Control* menu is read only. Magnum Energy has adopted an open protocol policy which allows third party firmware companies to control certain functions of the inverter/charger. This menu displays if any external device/software is controlling the router. It is designed to help support staff determine if the inverter/charger is operating normally, or is being controlled by a third party.

- **No** – Indicates no third party network device is controlling the router.
- **Yes** – Indicates a third party network device is currently controlling one of the allowable router functions. The function(s) that are being controlled by a third party will be displayed as a number. This number can be used by Magnum Tech Support to determine what code is controlling the router.

TECH: 07 Show all Menus
This menu enables you to have the router display all available screens (YES), or to just display those screens that pertain to the devices and accessories currently active (NO).
TECH: 08 Load all Defaults

This menu restores factory defaults to all settings on the inverter/charger and to any settings on accessories that are networked. To restore, press and hold the rotary SELECT knob for 5 seconds (“Resetting...” displays after 5 seconds). After the default settings have been restored, the display will show “All Factory Default settings in all devices are loaded.” Refer to Table 3-3 for router default values.

Info: For information on the factory default settings for any networked accessory, refer to the owner’s manual for that accessory.

Info: If the PIN has been set and locked, it must be entered before the Load System Defaults menu can be used.

Table 3-3, Inverter/Charger Default Settings on ME-RTR

<table>
<thead>
<tr>
<th>Menu Items</th>
<th>Default Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search Watts</td>
<td>5 Watts</td>
</tr>
<tr>
<td>LowBatCutOut</td>
<td>10 VDC (12v), 20 VDC (24v), 40 VDC (48v)</td>
</tr>
<tr>
<td>AC In – Time</td>
<td>Connect = 6:00AM, Disconnect = 6:00PM</td>
</tr>
<tr>
<td>AC In – Volts DC</td>
<td>Connect = 11.0V, Disconnect = 14.1V (12v)</td>
</tr>
<tr>
<td></td>
<td>Connect = 22.0V, Disconnect = 28.2V (24v)</td>
</tr>
<tr>
<td></td>
<td>Connect = 44.0V, Disconnect = 56.4V (48v)</td>
</tr>
<tr>
<td>AC In – SOC</td>
<td>Connect = 80%, Disconnect = 100%</td>
</tr>
<tr>
<td>Inv Always Power-up</td>
<td>NO</td>
</tr>
<tr>
<td>Inv Threshold to Start Parallel</td>
<td>60%</td>
</tr>
<tr>
<td>AC Input Amps</td>
<td>30 Amps (AC1), 20 Amps (AC2)*</td>
</tr>
<tr>
<td>Low VAC Dropout</td>
<td>80 VAC (AC1), 70 VAC (AC2)*, (Exports – 150 VAC)</td>
</tr>
<tr>
<td>Battery Type</td>
<td>Flooded</td>
</tr>
<tr>
<td>Absorb Done</td>
<td>Time = 2.0 Hrs</td>
</tr>
<tr>
<td>Max Charge</td>
<td>Rate = 100%, Time = 12.0 Hrs</td>
</tr>
<tr>
<td>Final Charge Stage</td>
<td>Multi-Stage</td>
</tr>
<tr>
<td>Days to remind EQ</td>
<td>OFF</td>
</tr>
</tbody>
</table>

* AC2 settings available on MSH4024RE models only.
4.0 ME-RTR Menu Maps

Figures 4-1 thru 4-5 are an overview of the settings and information displays available from the router’s menu buttons (see Sections 7.2.5 and 8.2.3 for overviews of router menus for an attached AGS and BMK, respectively). Figure 4-2 includes a port-specific METER menu for a connected inverter.

Figure 4-6 provides a legend key for the symbols used in these menu displays. Refer also to Appendix A in the back of this manual for a glossary of abbreviations that may appear on the router’s LCD display. **Note:** When applicable, defaults and ranges are listed for a 24-volt battery.

Figure 4-1, PORT/CTRL Button Menu Maps
Menu Maps

ALL Ports METER displays:

- **01 DC Meters**
 - **01 DC Volts to Inv**
 - **01A DC Volts to Inv**
 - 1 29.6 2 ---- 3 ---- 4 ---- 5 ---- 6 ----
 - ALL Read DC METER
 - **01B Inv/Chg DC Amps**
 - 1 -10A 2 ---- 3 ---- 4 ---- 5 ---- 6 ----
 - ALL Read DC METER

- **02 AC Meters**
 - **02 Inv/Chg Amps**
 - 1-10A 2 ---- 3 ---- 4 ---- 5 ---- 6 ----
 - ALL Read AC METER
 - **02 AC Input Volts**
 - 1 115V 2 ---- 3 ---- 4 ---- 5 ---- 6 ----
 - ALL Read AC METER
 - **02 AC Output Volts**
 - 1 115V 2 ---- 3 ---- 4 ---- 5 ---- 6 ----
 - ALL Read AC METER
 - **02 AC Output Hz**
 - 1 60.0 2 ---- 3 ---- 4 ---- 5 ---- 6 ----
 - ALL Read AC METER

- **03 Timers**
 - **03A Charge Time**
 - 1 12.0 Hrs
 - ALL Read TM METER
 - **03B Days Since**
 - Absorb/CV Done = 3
 - EQ Chg Started = 140
 - ALL Read TM METER

- **04 AGS Meters**
 - **04A Charge Time**
 - 1 12.0 Hrs
 - ALL Read TM METER
 - **04B Days Since**
 - Absorb/CV Done = 3
 - EQ Chg Started = 140
 - ALL Read TM METER

Note: Shaded displays below apply to MS-PAE or MSH model inverters only (Exceptions: The 02H display only appears if a MSH model inverter is connected. The 02I display only appears if a MSH-RE model is connected).

Port-specific METER displays (Inverter connected):

From System Home Screen:

- **Press**
 - **PORT**
 - **Press**
 - **PORT**
 - **Press**
 - **PORT**

METER

- **01 DC Meters**
 - **Press**
 - **01 DC Volts to Inverter**
 - 1 29.6 2 ---- 3 ---- 4 ---- 5 ---- 6 ----
 - ALL Read DC METER

- **02 AC Meters**
 - **Press**
 - **02 AC Output Volts**
 - 1 115V 2 ---- 3 ---- 4 ---- 5 ---- 6 ----
 - ALL Read AC METER
 - **02 AC Output Amps**
 - 1 -10A 2 ---- 3 ---- 4 ---- 5 ---- 6 ----
 - ALL Read AC METER

Note: Refer to Section 7.2.5 for AGS METER displays (Port-specific and ALL Ports)

Note: Refer to Section 8.2.3 for BMK METER displays (Port-specific and ALL Ports)

Note: Shaded displays below apply to MS-PAE or MSH model inverters only (Exceptions: The 02D display only appears if a MSH model inverter is connected. The AC2 field in the 02D display only appears if a MSH-RE model is connected).

MS4024PAE Inverter

- **Inverting**
 - 48.0VDC
 - 24ADC
 - System Home

01 DC Meters

- **01A DC Volts to Inverter**
 - 29.6VDC
 - P1 Read DC METER
- **01B Inv/Chg DC Amps**
 - 1 -10A
 - P1 Read DC METER

02 AC Meters

- **02A AC Output Volts**
 - 115V
 - 60.0 Hz
 - P1 Read AC METER
- **02 B AC Output Volts**
 - 115V
 - 60.0 Hz
 - P1 Read AC METER

03 Timers

- **03A Charge Time**
 - 12.0 Hrs
 - P1 Read TM METER
- **03B Days Since**
 - Absorb/CV Done = 3
 - EQ Chg Started = 140
 - P1 Read TM METER

04 AGS Meters

- **04A Charge Time**
 - 12.0 Hrs
 - P1 Read TM METER
- **04B Days Since**
 - Absorb/CV Done = 3
 - EQ Chg Started = 140
 - P1 Read TM METER

Note: Refer to Section 7.2.5 for AGS METER displays (Port-specific and ALL Ports)

Note: Refer to Section 8.2.3 for BMK METER displays (Port-specific and ALL Ports)

Note: Shaded displays below apply to MS-PAE or MSH model inverters only (Exceptions: The 02D display only appears if a MSH model inverter is connected. The AC2 field in the 02D display only appears if a MSH-RE model is connected).
Note: Gray shaded fields only appear if a MSH model inverter is active. (Exception: the "AC2 = " display only appears if a MSH-RE model is connected.)
Note: All other TECH displays are the same as the "ALL Ports" displays except the individual port is shown instead of "ALL" (ports).

Note: Display returns to 04 Fault History screen once all fault history clears and the SELECT button is released.

Note: If a PIN has already been set, you must enter the current PIN in order to change the PIN or to select the SETUP Unlocked/Locked options.

Note: If "SETUP Locked" has been selected from 05 SETUP PIN menu, you must enter the current PIN first.

Note: All Factory Default settings in all devices are loaded.
Menu Maps

<table>
<thead>
<tr>
<th>LEGEND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotate SELECT Knob</td>
</tr>
<tr>
<td>Menu Button</td>
</tr>
<tr>
<td>Menu Headings</td>
</tr>
<tr>
<td>Setting Default/ Current Setting</td>
</tr>
<tr>
<td>Port Display Type</td>
</tr>
<tr>
<td>Press SELECT Knob</td>
</tr>
<tr>
<td>Device</td>
</tr>
<tr>
<td>Display Type</td>
</tr>
<tr>
<td>Settings/Range</td>
</tr>
<tr>
<td>Figure 4-6, Legend Key for Menu Maps</td>
</tr>
</tbody>
</table>

Screen definitions:

Device – Displays the device being monitored or adjusted. Such as: Inverter (INV), Automatic Generator Start (AGS), Battery Monitor (BMK), Remote Control (RC), AC Load Diversion (ACLD).

Device Menu – Displays the particular menu you are on/viewing (e.g., “INV SETUP” is the inverter Setup menu, “CHG SETUP” is the charger Setup menu, “AGS METER” is the AGS Meter menu, etc.,)

System – Displays the top level information for the system.

Home – Displays the top level information for the port (device) selected.

“Up” Arrow – Denotes that more selections are available prior to the current selection.

“Left” Arrow – Denotes the current selection.

“Down” Arrow – Denotes that more selections are available after the current selection.

Display Type – Displays what type of action can be performed from the display. Such as:

- *edit* – a menu with editable settings/values that have not been changed by the SELECT knob.
- *EDIT* – a menu with editable settings/values that have been selected and changed.
- *Read* – a read only menu, settings/values cannot be changed from this menu.
- *Select* – top level menu, press SELECT knob to access sub-menus.
- *View* – menu that with a press of SELECT knob accesses editable settings/values.

Port – Displays what port you are on/viewing. May be a main port (P#), an accessory port (P#A), or the information displayed is from all ports (ALL).
5.0 Operation

This section explains how to operate the inverter/charger using the ME-RTR router. It also provides information on the LED indicators and the LCD display that are used to show the operational status of the inverter/charger.

5.1 Front Panel

The router’s front panel contains LED indicators and a LCD display for viewing system status, buttons to control system operation, and a rotary knob that enables you to locate and select system information and settings.

![ME-RTR Front Panel Controls and Indicators](image)

Figure 5-1, ME-RTR Front Panel Controls and Indicators

5.1.1 LED Indicators

There are four LED indicators on the front panel that light solid or blink to indicate the inverter/charger’s status. When the router is first powered-up, all the LEDs come on as it goes through a self-test (see Section 3.1). Once the self-test is complete, the LEDs and the LCD provide the operating status of the inverter/charger. See Section 5.1.1 for more information on the LED indicators.

5.1.2 LCD Display

The LCD display is used for setting up the system operation, as well as viewing current system operating status and fault conditions. This display has four lines of alphanumeric characters and features a backlight that can be set to turn off to conserve power.

- **Top line**: provides the inverter/charger status, or system status (which is detailed in this section).
- **Second line**: displays accessory/device status, or battery information when using the METER menu, system troubleshooting information when using the TECH menu, and menu items that can be configured for your specific system operation while in the SETUP menu.
- **Third line**: displays system menu information, and as with second line, displays setup fields for determining system operation.
- **Bottom line**: displays port information (port# or ALL ports), what action you can perform (see list below), and identifies the menu you have accessed and the device being adjusted/monitored.

- **Edit** – menu with editable settings/values that have not been changed by the SELECT knob
- **EDIT** – menu with editable settings/values that have been selected and changed
- **Read** – read only menu, settings/values cannot be changed from this menu
- **Select** – top level menu, press SELECT knob to access sub-menus
- **View** – menu that with a press of SELECT knob accesses editable settings/values
5.1.3 ON/OFF Buttons
- **ON/OFF INVERTER**: This button toggles the inverter function on and off. The green INV LED turns on and off with the button.
- **ON/OFF CHARGER**: This button toggles the charger function on and off after it is actively charging. This button is also used to initiate an Equalize charge. For more information on using the Equalize charge feature, see Section 5.2.2 and the Equalizing mode information on pages 59-60.

5.1.4 Menu Buttons
These five buttons provide quick access to menu items for configuring, monitoring, and troubleshooting your inverter/charger system.
- **PORT**: This button scrolls through the active communication ports (P1-P6). Pressing the PORT button will skip over non-active or empty ports allowing quick access to connected devices.
- **CTRL**: This button contains the *AC In Control, Charger Control, Gen Control, and RTR Aux Relay* menus. The CTRL button gives you quick control of the main functions of the inverter/charger.
- **METER**: This button provides meter information on the inverter/charger, and the ME-AGS-N and ME-BMK/ME-BMK-NS (if connected). See Section 3.3.3 for more detailed information.

Info: If the LCD display becomes unreadable, press and hold the METER button until the System Home screen shows (~3 seconds) to refresh the LCD display.

- **SETUP**: This button allows the router, the inverter/charger, and any connected accessory to be configured to your specific system preferences. See Section 3.3.4 for more detailed information.
- **TECH**: This button allows you to access menu selections that can help service personnel with troubleshooting, and also allows the factory default settings for the inverter/charger and any connected accessory to be restored. See Section 3.3.5 for more detailed information.

5.1.5 Rotary SELECT Knob
The rotary SELECT knob is used to view and select various menu items and settings displayed on the LCD screen. Turn clockwise/counterclockwise to view the different menu items and available settings. Press the SELECT knob to select/enter a menu item or to save a setting once it is displayed on the LCD screen.

Info: All adjustable settings in the router (except for **SETUP: 01B Screen Setup, CTRL: 03 Gen Control and TECH: 07 Show all Menus**)—which revert back to default—are saved in non-volatile memory and are preserved until changed—even if an inverter reset is performed or if all power to the router or inverter is removed.

CAUTION: An accessory that is networked to the inverter may have adjustable settings that revert back to default if all power to the inverter is lost. Refer to the owner’s manual for the particular accessory to determine if any setting is affected.

5.1.6 Aux Relay LED Indicator
The yellow Aux LED indicator allows a visual indication of the Aux Relay operation. The LED will be ON when the relay is closed (energized), and will be OFF when the relay is open (de-energized). See Figure 5-2.

What is the Aux Relay used for? The most common use is to turn on an exhaust fan to eliminate your battery bank gasses using the VDC start and stop settings. The Aux Relay can also be used to control the coil of a current carrying relay.

How do I adjust the Aux Relay? The **SETUP: 01F RTR Aux Relay** menu is used to determine the conditions (DC volts, inverter fault, or battery SOC) at which the relay automatically opens and closes.

Figure 5-2, Aux Relay LED
5.2 Operating the Inverter/Charger

5.2.1 Inverter Mode

Turning the inverter on: Press the ON/OFF INVERTER button to activate the inverter function. The inverter will either be actively “inverting” by using power from the batteries to power the AC loads; or, the inverter will be “searching” for a load by using very little power from the batteries, if in Search mode. The green INV LED is on when the inverter is actively inverting, and the green INV LED flashes while searching.

Turning the inverter off: While the inverter is actively inverting or searching, press the ON/OFF INVERTER button to switch the inverter function off. This turns the green INV LED off.

Inverter Standby: The inverter is in Inverter Standby mode when it is enabled (green INV LED is on) but not actively powering AC loads from the batteries. If in a standalone system, the inverter is in Inverter Standby when the charger is active (i.e., Charge mode). In a parallel system, inverter standby occurs to slave inverter when it is monitoring the power requirement of the parallel system to determine when to activate and provide power to assist the master inverter.

5.2.2 Charger Mode

Turning the charger on: The Charge mode is automatically activated and begins when acceptable AC power (utility or generator) is connected to the input of the inverter. When in Charge mode, the display may show: Absorb Charging, Bulk Charging, Charger Standby, Charging, Equalizing, Float Charging, Full Charge, Load Support AAC, Load Support VDC, and Silent. (When the charger is ON and actively charging, it produces DC voltage and current to charge your batteries, and the CHG LED is solid.)

CAUTION: If you have critical loads and are in Charge mode, do not press the ON/OFF INVERTER button, or you may inadvertently turn the inverter function off. While in any Charge mode, ensure the green INV LED is ON, or inverter power will NOT be available to run your critical loads if the external AC power is interrupted.

Charger Standby: While the charger is actively charging, press the ON/OFF CHARGER button to switch the charger to Charger Standby. When in Charger Standby, the incoming AC is still available on the inverter’s output, but the charger is not allowed to charge. The LCD displays ”Charger Standby” and the CHG LED flashes.

Info: To resume charging, momentarily press the ON/OFF CHARGER button or disconnect/reconnect AC power to the inverter’s input.

Equalize charging: Equalizing is a ‘controlled overcharge’ performed after the batteries have been fully charged. It mixes battery electrolyte (to reverse the buildup of stratification) and removes sulfates that may have built up on the plates. These conditions, if left unchecked, will reduce the overall capacity of the battery. To enable the Equalization charge, see pages 59-60.

WARNING: Do not perform an Equalization charge without reading and following all safety precautions pertaining to charging/equalization as noted in this manual and provided by the battery manufacturer.

5.3 System Status Messages

A status message may be an operational or fault message indicating the inverter/charger’s current operating status. This section will cover the inverter/charger’s operating and fault modes, and the available status messages under each mode.

Use the displayed status message and the status LEDs on your router to determine the inverter/charger’s current operating status, and to help troubleshoot the system if a fault occurs.

The System Home screen displays inverter/charger status messages on the top line and any accessory status messages on the second line (see Figure 5-3.1). The FAULT LED flashes to indicate that one of the ports has a fault. To determine which port has the fault, press the PORT button or rotate the SELECT knob until the FAULT LED turns solid. The fault now displays on the second line. The first line identifies if it is an inverter/charger fault or an accessory fault (see Figure 5-3.2).
Operation

Note: If a BMK is installed: the system voltage and system current values are BMK readings. If a BMK is not installed: the system voltage is the voltage of the master inverter, and the system current is the sum of the currents of all inverters connected in parallel.

Figure 5-3.1, SYSTEM Screen Status Messages

Figure 5-3.2, Individual PORT Screen Status Messages

Figure 5-3.3, All PORTs Screen Status Messages

Info: Whenever referencing “inverter/charger” in this section, please note it is referring to all paralleled stacked inverter/chargers, not individual inverter/chargers.

There are three modes of operation for the inverter/charger system:

• Inverter Mode
• Charger Mode
• Fault Mode

5.3.1 Inverter Mode Status Messages

There are several Inverter mode messages. View the top line of the LCD display and the corresponding message in this section to identify and understand the particular Inverter mode.

Empty appears on the LCD. The PWR (green) and INV (green) LEDs are on solid. The FAULT (red) and CHG LEDs are off.

Inverting appears on the LCD. The PWR (green) and INV (green) LEDs are on solid. The FAULT (red) and CHG LEDs are off.

Figure 5-4, Empty

• Empty – No device is connected to the router port.
 Note: This status differs from a "No Inverter Found!" fault status. Power is present, but no information is being received from the router port.

Figure 5-5, Inverting Mode

• Inverting (Invert) – The inverter is providing AC voltage on its output by inverting power from the batteries.
5.3.1 Generator Mode Status Messages

When AC power (utility or generator) is connected to the inverter/charger it monitors the AC input for acceptable voltage. Once AC input is accepted, the AC transfer relay (within inverter) closes and Charge mode begins. View the top line of the LCD display and the corresponding message in this section to identify and understand the particular Charge mode that displays.

Info: The AC input becomes acceptable once a minimum 10-second delay passes, the voltage is greater than the SETUP button’s 03B Low VAC Dropout setting, and there is no CTRL: AC In Control menu setting that is actively preventing the AC from connecting.

5.3.2 Charger Mode Status Messages

When AC power (utility or generator) is connected to the inverter/charger it monitors the AC input for acceptable voltage. Once AC input is accepted, the AC transfer relay (within inverter) closes and Charge mode begins. View the top line of the LCD display and the corresponding message in this section to identify and understand the particular Charge mode that displays.

Info: The AC input becomes acceptable once a minimum 10-second delay passes, the voltage is greater than the SETUP button’s 03B Low VAC Dropout setting, and there is no CTRL: AC In Control menu setting that is actively preventing the AC from connecting.
Operation

Absorb Charging

Absorb Charging appears on LCD. PWR (green) LED is on solid. CHG (green) LED is typically on solid, but may blink. FAULT (red) LED is off, and INV (green) LED could be on or off.

Figure 5-10, Absorb Charging Mode

• Absorb Charging (Absorb) – The Absorb Charge state is the constant voltage stage and begins when the absorb voltage is reached (determined by the SETUP button’s 03C Battery Type setting) while Bulk charging. During this stage, the DC charging current decreases in order to maintain the absorb voltage setting. This charge stage continues until the 03D Absorb Done (Time, Amps, or SOC) or 03E Max Charge: Time setting is reached.

Bulk Charging

Bulk Charging appears on LCD. PWR (green) LED is on solid. CHG (green) LED is typically on solid, but may blink. FAULT (red) LED is off. INV (green) LED could be on or off.

Figure 5-11, Bulk Charging Mode

• Bulk Charging (Bulk) – The battery charger is delivering maximum current (determined by the SETUP button’s 03E Max Charge: Rate setting) to the batteries. The charger will remain in Bulk charge until the absorb voltage (determined by the SETUP button’s 03C Battery Type menu setting) or the 03E Max Charge: Time setting is reached.

Charger Standby

Charger Standby appears on LCD. PWR (green) LED is on solid and CHG (green) LED blinks. FAULT (red) LED is off. INV (green) LED could be on or off.

Figure 5-12, Charger Standby Mode

• Charger Standby (Chg Stby) – This indicates the charger has been disabled to prevent further charging, but the AC power (from utility or generator) to the AC input is still available on the AC output. This display is shown when the ON/OFF CHARGER button is pressed while the AC power is passing through the inverter/charger.

Info: Press the ON/OFF CHARGER button to enable charging again. When enabled, the charger continues in the previous charge mode and the CHG (green) LED comes on solid.

Charging

Charging appears on LCD. PWR (green) and CHG (green) LEDs are on solid. FAULT (red) LED is off, and INV (green) LED could be on or off.

Figure 5-13, Charging Mode

• Charging (Charge) – Once Charge mode has been enabled, the unit will wait and display “Charging” to determine the charge routine. The charger will initiate Bulk Charging if connected to AC based on SOC, the battery type is CC/CV, or if the DC voltage is low (≤12.8 VDC / 12-volt models, ≤25.6 VDC / 24-volt models, or ≤51.2 VDC / 48-volt models). If the DC voltage is high (≥12.9 VDC / 12-volt models, ≥25.6 / 24-volt models, or ≥51.2 / 48-volt models), the charger will skip the Bulk and Absorb charging stages and go directly to the final charge stage (Float or Silent).
Figure 5-14, Constant Current Mode

- **Constant Current (CCurrent)** – The battery charger is delivering maximum current to the batteries (determined by the Max Charge Amps setting under the SETUP button’s 03C Battery Type: CC/CV menu). The charger will remain in Constant Current charge until the CV Charge Volts or Max CC/CV Charge Time is reached (determined by the settings under the SETUP button’s 03C Battery Type: CC/CV menu).

 Note: This status only displays if “CC/CV” has been selected from the SETUP button’s 03C Battery Type menu.

Figure 5-15, Constant Voltage Mode

- **Constant Voltage (CVoltage)** – This mode begins when the CV Ch Volts is reached (determined by the settings under the SETUP button’s 03C Battery Type: CC/CV menu) while in the Constant Current charge mode. During this stage, the DC charging current decreases in order to maintain the absorb voltage setting. This charge stage continues until the 03D Absorb Done (Time, Amps, or SOC) or 03E Max Charge: Time setting is reached.

 Note: This status only displays if “CC/CV” has been selected from the SETUP button’s 03C Battery Type menu.

Figure 5-16, Equalizing Mode

- **Equalizing (Equalize)** – This display indicates the charger is delivering the equalize voltage to the batteries based on the equalize voltage from Table 3-1 for your battery type. Equalize charging can be enabled by the ON/OFF CHARGER button—if the SETUP button’s 03C Battery Type setting allows. Equalization charging can only be enabled while the charger is in Float Charge, Full Charge, or Silent Charge mode. To turn on Equalize charging, ensure the LCD display reads “Float Charging”, “Full Charge” or “Silent”, and then press and hold down the ON/OFF CHARGER button (about 5 seconds) until the LCD screen displays “Equalizing”.

 The Equalize charge continues for four hours and then automatically stops and returns to the previous charge mode. The Equalize charge can be manually stopped by pressing and holding down the ON/OFF CHARGER button (about 5 seconds) until the LCD screen leaves “Equalizing” and then leaves “Charger Standby” and shows the previous charge mode (i.e., Float Charge, Full Charge, or Silent Charge mode).

 WARNING: Equalizing produces hydrogen and oxygen gas. To avoid explosions, ensure the battery compartment has adequate ventilation in order to dissipate this gas.
Operation

CAUTION: During Equalizing mode, the batteries begin gassing and bubbling vigorously—which consumes water. Ensure each cell has adequate distilled water levels prior to equalizing, and add water as needed after equalizing.

CAUTION: Ensure your batteries can be equalized. Only do so if permitted by your battery manufacturer or dealer. Performing an Equalize charge on batteries other than liquid lead acid or certain AGM types could permanently damage them. Contact your battery manufacturer for their recommendations.

CAUTION: Ensure the DC loads will not be damaged by the higher voltage applied to the batteries during the Equalize charge. If in doubt, disconnect the loads to prevent damage.

Info: Even though equalization charging can be enabled if the GEL or AGM2 battery type is selected (under the SETUP menu’s 03C Battery Type setting) The voltage will not increase above the absorption voltage level, which effectively does not allow an equalization charge for these two battery types.

How often should I equalize? Some experts recommend that heavily used batteries should be equalized periodically, ranging anywhere from once a month to once or twice per year. Other experts only recommend equalizing when the cells have a low specific gravity, or when the difference between any individual cell has a specific gravity reading greater than .015 after being fully charged. Contact your battery manufacturer for their recommendations.

How long should I equalize? While the batteries are gassing, monitor the specific gravity readings every hour. When the specific gravity readings no longer increase, the Equalization charge is complete and should be stopped.

Figure 5-17, Float Charging Mode

- **Float Charging (Float)** – In Float Charging mode, the charger reduces the charge voltage and tries to maintain the batteries at the float charge voltage setting. This is determined by the SETUP menu’s 03C Battery Type setting as shown in Table 3-1.

 Info: If the battery voltage falls ≤12.1 VDC (12-volt models), ≤24.2 VDC (24-volt models) or ≤48.4 VDC (48-volt models); the unit will initiate bulk charging.

Figure 5-18, Full Charge Mode

- **Full Charge (Full Chg)** – This status indicates that you have entered the Battery Saver™ mode. This mode maintains the batteries without overcharging, and prevents excessive loss of water in flooded batteries or drying out of GEL/AGM batteries. After four hours of Float charging, the charger turns off and displays “Full Charge” (charger is now in Battery Saver™ mode). If the battery voltage drops to ≤12.6 (12-volt models), ≤25.2 (24-volt models) or ≤50.4 (48-volt models), the charger will automatically initiate another four hours of Float charging. This cycle helps to ensure the batteries are maintained and continues as long as AC power is continuously connected to the AC input. “Full Charge” only displays if Multi-Stage is selected from the 03F Final Charge Stage menu.
Load Support AAC appears on LCD. PWR (green) LED is on solid and CHG (green) LED blinks. FAULT (red) LED is off, and INV (green) LED is on solid.

Load Support AAC

- **Load Support AAC (LS-AAC)** – This display indicates the Load Support (Amps AC) feature is active because the inverter loads are requiring more power than the incoming AC source can provide on its own. The inverter pulls the additional current needed for the loads from the inverter batteries to keep the incoming AC current from exceeding the **SETUP: 03A AC Input Amps** setting.

 Info: The Load Support AAC feature operates in parallel with the AC input to support the inverter loads and is only available on MSH Series inverter/chargers. It is only active when the AC input is connected and the inverter is enabled (INV LED is on).

 Info: When the inverter is in Charge mode, the battery current (under the **METER/01B Inv/Chg DC Amps** menu) is normally a positive value to show charging. However, in Load Support AAC mode, the battery current reading is a negative number to indicate how much current is being removed from the inverter batteries. The inverter batteries will continue to provide current to assist the AC input current until the battery reaches 0.5 volts (12-volt systems), 1.0 volts (24-volt systems), and 2.0 volts (48-volt systems) above the **SETUP: 02B LBCO Volts** setting.

Figure 5-19, Load Support AAC Mode

- **Load Support VDC** appears on LCD. PWR (green) LED is on solid and CHG (green) LED blinks. Fault (red) LED is off, and INV (green) LED is on solid.

Load Support VDC

- **Load Support VDC (LS-VDC)** – This display indicates the Load Support (Volts DC) feature is active because an external DC source (solar, wind, etc.,) is providing more current than needed—causing the battery voltage to rise. The inverter/charger reduces the incoming AC current to keep the battery voltage from rising above the temperature-compensated **SETUP: 03C Battery Type** setting.

 Info: The Load Support VDC feature operates in parallel with the AC input to support the inverter loads and is only available on MSH Series inverter/chargers. This feature is only active in Absorb, Float, EQ or Constant Voltage charge modes and when the inverter is enabled (INV LED is on); it is deactivated if the charger is in Charger Standby.

Figure 5-20, Load Support VDC Mode

- **Silent** appears on LCD. PWR (green) LED is on solid and CHG (green) LED blinks. Fault (red) LED is off, and INV (green) LED could be on or off.

Silent

- **Silent** – This displays at the end of the Absorb charge stage if Silent is selected from the **SETUP: 03F Final Charge Stage** menu, or at the end of the Constant Voltage stage [if CV Chg Done Time (or Amps) is selected under the **SETUP: 03C Battery Type: CC/CV** menu]. In Silent mode, the charger is not actively charging but does monitor the battery voltage. If the voltage reaches the **Set DC Volts to ReBulk** setting (under the **03F Final Charge Stage** menu), or the **Set DC Volts to Recharge** setting (under the **03C Battery Type: CC/CV** menu), the charger will restart another charge cycle and then transition back into Silent mode at the end of the Absorb (or Constant Voltage) charge cycle.

Figure 5-21, Silent Mode
5.3.3 Secondary Scrolling Status Messages

These displays alternate with the inverter’s primary status to indicate other pertinent messages. **Note:** Depending on circumstances, the lighting sequence of the LED indicators may vary as there can be several secondary status messages scrolling at any one time.

AC In – Disabled appears on LCD. PWR (green) LED is on solid and CHG (green) LED is blinking.

Figure 5-22, AC In – Disabled Mode

- **AC In – Disabled** – AC power is present at the inverter’s AC input, but the inverter/charger is prevented from connecting to any incoming AC because the **AC In – Disabled** setting is selected from the CTRL: 01 AC In Control menu.

Gen Warm-up appears on LCD. PWR (green) LED is on solid and CHG (green) LED is blinking.

Figure 5-23, Gen Warm-up Mode

- **Gen Warm-up** – The ME-AGS-N has commanded a generator to run, but the inverter will not connect to the generator’s AC output until the generator warm-up time is complete. **Note:** Requires the optional ME-AGS-N Auto Gen Start module to be connected.

Max Charge Time appears on LCD. PWR (green) LED is on solid and CHG (green) LED is blinking.

Figure 5-24, Max Charge Time Mode

- **Max Charge Time** – This display indicates the Max Charge Time safety feature was enabled because the charge time was longer than the **Max Charge: Time** setting. **Info:** The Max Charge Time safety feature uses the time accumulated under the METER: 03A Charge Time display to determine the total charge time.

Info: The Max Charge Time display can be reset by either reconnecting AC to the inverter (causing the charge status to go to “Charging”), initiating another charge cycle (Bulk, EQ, or Constant Current), or turning the Max Charge Time feature off.

Info: The timer for the **Max Charge: Time** menu runs when the battery voltage is greater than 0.2 volts above the float voltage setting.

Reminder to EQ appears on LCD. PWR (green) LED is on solid and CHG (green) LED blinks.

Figure 5-25, Reminder to EQ Mode

- **Reminder to EQ** – This display indicates that it is time to EQ your batteries. This occurs when the **SETUP: 03G Days to remind when to EQ** setting has been enabled and the # of days has been exceeded.

 Info: The Reminder to EQ display is reset by initiating an EQ charge cycle, or by turning the **SETUP: 03G Days to remind when to EQ** setting to **OFF**.

SOC Connect appears on LCD. PWR (green) LED is on solid and CHG (green) LED is blinking.

Figure 5-26, SOC Connect Mode

- **SOC Connect** – AC power is present at the inverter’s AC input, but not allowed to connect. The battery bank’s State of Charge needs to reach the **Connect SOC** setting from the **SETUP: 02E AC In – SOC** menu in order for the inverter/charger to connect to the incoming AC.

Time Connect appears on LCD. PWR (green) LED is on solid and CHG (green) LED blinks.

Figure 5-27, Time Connect Mode

- **Time Connect** – AC power is present at the inverter’s AC input, but not allowed to connect. The time of day needs to fall within the **Connect** time and the **Disconnect** time settings per the **SETUP: 02C AC In – Time** menu in order for the inverter/charger to connect to the incoming AC.

VDC Connect appears on LCD. PWR (green) LED is on solid and CHG (green) LED blinks.

Figure 5-28, VDC Connect Mode

- **VDC Connect** – AC power is present at the inverter’s AC input, but not allowed to connect. The battery voltage needs to fall below the **Connect** volts setting from the **SETUP: 02D AC In – Volts DC** menu in order for the inverter/charger to connect to the incoming AC.
5.3.4 Fault Mode Messages
The FAULT LED comes on and a fault status is displayed when an abnormal condition is detected. Use this section to identify and correct the issue.

Info: Many of the faults automatically clear once the fault is resolved. Some will require a manual restart. This requires the ON/OFF INVERTER button on the router to be pressed and released. Finally, if the fault will not clear, an inverter reset (see Section 6.2) or power-down (see Section 6.3) may be required.

5.3.4.1 System Fault Messages
These fault messages are usually caused by an external issue that directly affects the inverter/charger system.

AC Backfeed

- **AC Backfeed (Backfeed)** – This fault message causes the inverter to shut down because AC voltage from an external AC source has been detected on the inverter’s AC output. When the unit shuts down because of this fault condition, an inverter reset or power-down will be required to resume operation (see Sections 6.2 & 6.3).

Remedy: This fault usually occurs because the inverter’s AC output wiring is connected to the incoming AC source (either hardwired or through a switch/breaker). When this fault happens, all system wiring should be re-checked to ensure the incoming hot and/or neutral wires are not in some way connected to the AC output.

AC Overload

- **AC Overload (AC OverL)** – This fault message displays when the AC load on the inverter/charger’s output has exceeded the inverter’s AC current protection limits. If the overload condition lasts for less than 10 seconds, the unit will automatically restart and resume operation. However, if the overload occurs for more than 10 seconds, the unit will shut down and require a manual restart.

Remedy: This fault occurs because the connected AC loads are larger than inverter’s output capacity, there is a wiring short on the output, or the output wires are incorrectly installed. Once the AC loads are reduced or the output wiring is corrected, the inverter can be restarted after a manual restart.
Operation

Breaker Tripped appears on the LCD and the FAULT (red) LED is on. The PWR (green), CHG (green), and INV (green) LEDs are off.

Figure 5-31, Breaker Tripped Fault

- **Breaker Tripped (Brk Trip)** – The AC input breaker on the inverter/charger has opened due to excess current flow through the inverter to the AC loads.

Remedy: After reducing the AC loads on the inverter’s output, push in the inverter’s AC input circuit breaker to reset and resume operation.

Dead Batt Charge appears on the LCD and the FAULT (red) LED is on. The PWR (green), CHG (green), and INV (green) LEDs are off.

Figure 5-32, Dead Battery Charge Fault

- **Dead Battery Charge (DeadBatt)** – This fault indicates a discharged battery bank, or the battery bank is disconnected from the inverter. The unit is attempting to enter Charge mode, but has detected less than 7 volts (12-volt models), 14 volts (for 24-volt models) or 28 volts (for 48-volt models) on the battery bank. This fault continues until current is able to flow into the battery from the battery charger. Once this happens, the fault will automatically reset.

Remedy: Remove all incoming AC to the inverter’s input, then check DC voltage on the inverter’s DC terminals and compare it with the DC voltage on the battery bank. These two voltages should be very close (<0.5 VDC difference). If not, check to ensure all connections are tight and the fuse/circuit breaker between the inverter and battery bank is good.

FET Overload appears on the LCD and the FAULT (red) LED is on. The PWR (green), CHG (green), and INV (green) LEDs are off.

Figure 5-33, FET Overload Fault

- **FET Overload (FETOverL)** – This fault message indicates the inverter/charger has shut down because the internal FETs (Field Effect Transistors) have quickly exceeded a safe operating temperature. When the FETs cool, the unit requires a manual restart to resume operation.

Remedy: If the fault continues, disconnect all AC power to the inverter’s input, remove the inverter’s AC output wires and reset the inverter (see Section 6.2). After the reset, turn the inverter on. If the fault does not clear after the reset, the inverter may require service.
High Battery appears on the LCD and the FAULT (red) LED is on. The PWR (green), CHG (green), and INV (green) LEDs are off.

Figure 5-34, High Battery Fault

- **High Battery (HighBatt)** – The inverter has turned off because the battery voltage is at a very high level. This fault message displays and the FAULT (red) LED turns on when the battery voltage is above the High Battery Cut-Out (HBCO) value. This fault will automatically restart and resume operation when the battery voltage drops 0.3 VDC (12-volt models), 0.6 VDC (24-volt models), or 1.2 VDC (48-volt models) below the HBCO value.

 Info: The HBCO value depends on the inverter version and model. Normally, the HBCO value for modified sine wave inverters (i.e., ME/MM/RD Series) is 16 VDC (12v models) or 32 VDC (24v models); and, the HBCO value for pure sine wave inverters (i.e., MS/MMS/MSH Series) is 17 VDC (12v models), 34 VDC (24v), or 68 VDC (48v).

 Remedy: This fault usually only occurs when an external DC charging source is charging the inverter’s battery bank. Turn off any other additional charging source to allow the DC voltage level to drop.

High Batt Temp appears on the LCD and the FAULT (red) LED is on. The PWR (green), CHG (green), and INV (green) LEDs are off.

Figure 5-35, High Battery Temperature

- **High Battery Temperature (HBatTemp)** – This fault message indicates the inverter/charger has shut down because the Battery Temperature Sensor (BTS) has reached a temp >54°C/129°F.

 Remedy: Once the BTS has cooled down (<49°C/120°F), it automatically restarts and continues operation. As a precaution, check the BTS location; if placed on a battery, ensure they are not overheated, or that the BTS hasn’t been placed in a hot area or near a hot device. If neither of these are the issue, then monitor the BTS meter under the **TECH: 01 INV Temperatures** menu. If this reading is above 54°C/129°F, remove the BTS from the inverter BTS port. If the Batt Temp Sensor reading goes to 25°C/77°F, replace the BTS. If the reading does not go to 25°C/77°F, then inspect the BTS port for cleanliness and/or have the inverter/charger serviced.

High Speed Bus appears on the LCD and the FAULT (red) LED is on. The PWR (green), CHG (green), and INV (green) LEDs are off.

Figure 5-36, High Speed Bus Fault

- **High Speed Bus (BusFault)** – This fault indicates a communication error has occurred between the inverter’s internal onboard microprocessors. When the unit shuts down because of this fault condition, perform an inverter reset or power-down the inverter (see Sections 6.2 & 6.3).

 Remedy: After performing the reset, turn the inverter on. If the fault does not clear after the reset, the inverter may require service.
High Volts AC appears on the LCD and the FAULT (red) LED is on. The PWR (green), CHG (green), and INV (green) LEDs are off.

Figure 5-37, High Volts AC Fault

- **High Volts AC (High VAC)** – This fault causes the AC input to be disabled because a very high AC voltage (>145 VAC; or >290 volts for export inverters) has been detected on the AC input.

 Remedy: Remove all AC power from the inverter’s AC input for 15 minutes to reset this fault. Ensure only 120VAC power is connected to each of the inverter’s AC inputs.

Low Battery appears on the LCD and the FAULT (red) LED is on. The PWR (green), CHG (green) and INV (green) LEDs are off.

Figure 5-38, Low Battery Fault

- **Low Battery (Low Batt)** – This fault displays when the battery voltage drops below the SETUP menu’s 02B LBCO Volts setting for more than one minute, and only occurs if the inverter was “Inverting” or “Searching”.

 Remedy: This fault will automatically restart and resume operation when the battery voltage rises to ≥12.5 VDC (12V models), ≥25 VDC (24V models), or ≥50.0 VDC (48V models); or, if AC power—such as utility power or a generator—is connected to the inverter/charger’s input and battery charging begins.

No Inverter Found! appears on the LCD and the FAULT (red) LED is on. The PWR (green), CHG (green) and INV (green) LEDs are off.

Figure 5-39, No Inverter Found!

- **No Inverter Found! (Empty)** – This fault indicates that the communication data from the inverter’s Remote (blue) or Network (green) connection to the router’s remote port (P1-P6) is missing.

 Remedy: Check for the following conditions that can cause a “No Inverter Found!” fault.

 a) The router’s remote port (P1-P6) that is connected to the inverter may be bad, try a different remote port on the router to see if communication is restored.

 b) The remote cable from the inverter to the router’s remote port is either the incorrect cable, connected incorrectly, or has gone bad. See Section 2.4 for cable information.

 c) If a Tfmr Overtemp fault occurs for more than 10 seconds, the inverter automatically resets. After the inverter resets, the display changes from “Tfmr Overtemp” to “No Inverter Found!”’. View the TECH: 04 Fault History menu to determine if a Tfmr Overtemp fault occurred; if this is the case, the inverter requires service/repair.

 d) The communications IC in the router may be bad, try another router display.

 e) Reconnect the router from the inverter’s Remote (blue) port to the Network (green) port. If this does not fix it, then the inverter may need servicing.
Overcurrent appears on the LCD and the FAULT (red) LED is on. The PWR (green), CHG (green), and INV (green) LEDs are off.

Figure 5-40, Overcurrent Fault

- **Overcurrent (Overcrnt)** – This fault may be the result of an excessive AC load and causes the inverter to shut down to protect internal power components. If the overload condition lasts for less than 10 seconds, the unit automatically restarts and resumes operation. However, if the overcurrent condition occurs for more than 10 seconds, the unit shuts down and requires a manual restart.

Remedy: This fault usually occurs because the connected AC loads are larger than the inverter’s output capacity, there is a wiring short on the AC output, or the wires are incorrectly wired. Once the AC loads are reduced or the output wiring is corrected, manually restart the inverter to resume operation. If this fault condition continues after all of these recommendations, perform a inverter reset (see Section 6.2).

Overtemp appears on the LCD and the FAULT (red) LED is on. The PWR (green), CHG (green), and INV (green) LEDs are off.

Figure 5-41, Overtemp Fault

- **Overtemp (OverTemp)** – This fault message indicates the inverter/charger has shut down because the internal power components (FETs and/or transformer) have exceeded their safe temperature operating range. Unit will automatically restart and continue operation once it cools.

Remedy: If the fault occurs while inverting, reduce the load on the inverter. If it occurs while charging, turn down the charge rate. If this fault happens often, ensure the inverter is not in a hot area, has proper ventilation, and the cooling fans are working.

Stuck Relay appears on the LCD and the FAULT (red) LED is on. The PWR (green), CHG (green), and INV (green) LEDs are off.

Figure 5-42, Stuck Relay Fault

- **Stuck Relay (Stuck Ry)** – This fault message displays when the inverter is “inverting”, but has determined that the internal AC pass-thru relay (that should be open while inverting) is closed.

Remedy: The AC pass-thru relay is likely stuck—likely due to damage to the contacts from trying to handle currents greater than they are rated. This is usually caused by not protecting the relay from handling high continuous currents, or by switching high current inductive loads. The internal relay contacts are rated to handle 30 amps AC continuously and should be protected with a breaker sized no larger than 30 amps. If you are connected to an AC source (grid or generator) and running large inductive loads (e.g., pumps, motors, etc.,) on the inverter output, turn those particular loads off prior to removing the AC input source. This fault requires an inverter or power-down to resume operation (see Sections 6.2 & 6.3).
Tfmr Overtemp appears on the LCD and the FAULT (red) LED is on. The PWR (green), CHG (green), and INV (green) LEDs are off.

Figure 5-43, Tfmr Overtemp Fault

- **Tfmr Overtemp (Tfmr OT)** – This fault message displays when the transformer temperature is \(>130°C \), causing the Thermal Cut-Out (TCO) sensor on the transformer to open. If the TCO sensor stays open after 10 seconds, the inverter auto-resets. This fault also happens if any line in the TCO sensor is open.

 Remedy: Remove all power (AC and DC) to the inverter and let it cool down. After the inverter has cooled down, reconnect the DC side (batteries). If:
 a) the “Tfmr Overtemp” fault returns or the display reads “No Inverter Found!”, then the inverter requires service/repair.
 b) the inverter is now working, ensure the inverter is in a cool location, has adequate ventilation, and the internal cooling fans are operational.

Unknown Fault ## appears on the LCD and the FAULT (red) LED is on. The PWR (green), CHG (green), and INV (green) LEDs are off.

Figure 5-44, Unknown Fault ##

- **Unknown Fault ## (Fault ##)** – This fault message displays when the inverter/charger has sent a fault code that cannot be determined by the router.

 Remedy: Call the Technical Support department at Magnum Energy (425-353-8833) for assistance in determining and understanding the actual fault status.
5.3.4.2 Stacking Fault Messages

A fault condition may occur when multiple inverters are stacked in parallel—using the router—that is not possible on a single inverter installation. Refer to the following fault messages to help troubleshoot the inverters.

StackClock Fault

StackClock Fault appears on the LCD and the FAULT (red) LED is on. The PWR (green), CHG (green) and INV (green) LEDs are off.

![StackClock Fault](image)

Figure 5-45, StackClock Fault

- **StackClock Fault (StkClock)** – 1. There is a stacker cable problem; or, 2. One inverter is losing synchronization with the other inverter.

Remedy: Ensure you are using the RJ45 cables supplied with the router for parallel stacking. Check to make sure you hear an audible “click” when plugging in the RJ45 cables.

Info: This fault has been known to occur when a Magnum Energy accessory is plugged into the Stack Port, but the installation is not using multiple inverters in a stacked configuration. If this occurs, perform an inverter reset (see Section 6.2).

Stack Mode Fault

Stack Mode Fault appears on the LCD and the FAULT (red) LED is on. The PWR (green), CHG (green), and INV (green) LEDs are off.

![Stack Mode Fault](image)

Figure 5-46, Stack Mode Fault

- **Stack Mode Fault (Stk Mode)** – This unit has detected a problem with another stacked inverter, check the other units for a fault condition.

Remedy: This fault will automatically clear when the fault with the other inverter is corrected.

StackPhase Fault

StackPhase Fault appears on the LCD and the FAULT (red) LED is on. The PWR (green), CHG (green), and INV (green) LEDs are off.

![StackPhase Fault](image)

Figure 5-47, StackPhase Fault

- **StackPhase Fault (StkPhase)** – 1. The AC input wiring is incorrect; or, 2. One phase was lost from the AC input source; or, 3. One of the inverter’s internal transfer relays is bad; or, 4. The inverter’s AC input circuit breaker may be open.

Remedy: If this fault doesn’t clear after checking these four recommendations, perform an inverter reset (Section 6.2).
5.3.4.3 Internal Fault Messages

The inverter continually monitors several internal components. If a condition inside the inverter occurs that does not allow proper operation, the inverter shuts down to protect itself. To clear these “internal” faults, the inverter will require an inverter reset.

Remedy: Perform an inverter reset (see Section 6.2). After resetting the inverter, press the ON/OFF INVERTER button to turn the inverter on and verify the fault has cleared. If the internal fault remains, the inverter will require repair at a Magnum Energy Authorized Service Center.

Figure 5-48, Internal Bridge Fault
- **Internal Bridge (Int Brdg)** – This fault message displays when the FET bridge shuts down after the inverter has been inverting—the inverter output circuit can no longer detect any AC output voltage or current.

Figure 5-49, Internal Charger Fault
- **Internal Charger (Int Chgr)** – This fault message displays when the FET bridge shuts down because the charger circuit is trying to provide maximum current, but is not detecting any current or voltage rise to the battery bank.

Figure 5-50, Internal NTC Fault
- **Internal NTC (Int NTC)** – This fault displays when the internal NTC (Negative Temperature Coefficient) sensor suddenly senses a very large but unexpected temperature change.

Figure 5-51, Internal Relay Fault
- **Internal Relay (IntRelay)** – This fault displays when the internal AC transfer relay is not closed while charging.
5.3.5 LED Indicator Guide

The router provides the following LEDs (along with the LCD display) to assist you in determining the operating status of your inverter/charger.

Table 5-1, LED Indicator Guide

<table>
<thead>
<tr>
<th>LED</th>
<th>Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWR</td>
<td>OFF</td>
<td>1. Inverter is disabled; 2. Router’s in Power Save mode – press any button to activate LEDs; 3. No power to router (check router cable or power to inverter); or, 4. No AC power at the inverter’s AC output.</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>AC power is available from inverter, utility, or generator at the inverter’s AC output terminals.</td>
</tr>
<tr>
<td>FAULT</td>
<td>OFF</td>
<td>Normal operation – no fault condition.</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>A fault condition has been detected. Check the LCD display to find and correct the cause.</td>
</tr>
<tr>
<td></td>
<td>BLINKING</td>
<td>The charger is in Charger Standby mode. This occurs when the ON/OFF CHARGER button is pressed to disable the charger.</td>
</tr>
<tr>
<td></td>
<td>BLINKING</td>
<td>The charger is in Battery Saver mode. This mode monitors battery voltage level and only charges if the battery voltage decreases to a low level. Silent mode will automatically start charging when the ReBulk setting is reached.</td>
</tr>
<tr>
<td>CHG</td>
<td>BLINKING</td>
<td>This indicates that the Max Charge Time safety feature has been enabled causing the charger to enter the Float or Silent charge mode to prevent the charger from holding the batteries at a high voltage for a prolonged period of time. Note: To reset the green CHG LED and the Max Charge Time display, either reconnect the AC input and start the "Charging" status, or start another Bulk, EQ, or Constant Current charge cycle.</td>
</tr>
<tr>
<td></td>
<td>BLINKING</td>
<td>This is provided as a reminder that it is time to equalize the batteries. The CHG indicator comes on when the SETUP: 03G Days to Remind when to EQ setting has been enabled and the # of days has been exceeded. Note: To reset the green CHG LED and the EQ Reminder display, start an EQ charge.</td>
</tr>
<tr>
<td>INV</td>
<td>OFF</td>
<td>1) Inverter is disabled; or, 2) Router is in Power Save mode – press any button to activate LEDs.</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>Inverter is enabled – 1) Supplying AC power on the output; or, 2) If both INV and CHG LEDs are on, then the inverter input is connected to utility or generator power and is in Standby mode. The inverter will automatically power the AC loads if the incoming AC power is lost.</td>
</tr>
<tr>
<td></td>
<td>BLINKING</td>
<td>Inverter is in Search mode (the AC load is below the SETUP button’s 02A Search Watts setting).</td>
</tr>
</tbody>
</table>
6.0 Troubleshooting

If the router is not functioning correctly, use the following table to help find solutions.

Table 6-1, Router Troubleshooting Guide

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display shows unrecognizable letters or symbols.</td>
<td>Static electricity may have been discharged into the LCD display.</td>
<td>Refresh Display: To refresh the display, press and hold the METER button until the System Home screen shows (~3 seconds).</td>
</tr>
<tr>
<td>LCD text display is locked-up, pressing any button has no response.</td>
<td>The connections on the ends of the communication cable are not making a good contact.</td>
<td>Reset router: 1) Disconnect router cable from inverter for 5 seconds and reconnect; 2) Check cable connections on the router (see Figures 2-7 & 2-8). Important: Ensure the RJ14 connector is pushed into the correct port. You should feel/hear “click” when the connection is made.</td>
</tr>
<tr>
<td>Router not getting sufficient power from inverter.</td>
<td></td>
<td>Ensure inverter batteries are connected and inverter is operating correctly. Inverter should be able to invert and power AC loads from batteries (ensure no AC power is connected to the inverter AC inputs).</td>
</tr>
<tr>
<td>LEDs and backlight are off.</td>
<td>Router is in Power Save mode.</td>
<td>Press any button to reactivate router (or turn Power Save mode to OFF to keep the LEDs and backlight on).</td>
</tr>
<tr>
<td>Router is non-functional (no lights, no text on LCD display, and no response when pressing any button).</td>
<td>Communication cable bad or not correctly connected from remote (or network) port on inverter to a remote port on router.</td>
<td>Check communications cable from inverter to router, ensure: 1) It is connected to the router remote port on one end and the other end is connected to the Remote (or Network) port on the inverter. 2) The correct communications cable is used (a 4-conductor telephone cable may be substituted to determine if cable is good).</td>
</tr>
<tr>
<td>Inverter is dead (i.e., not powered or connected to batteries).</td>
<td></td>
<td>Ensure inverter batteries are connected and inverter is operating correctly without any AC input power connected (can invert and power AC loads from batteries).</td>
</tr>
</tbody>
</table>
Troubleshooting

6.1 Troubleshooting Tips

6.1.1 Inverter Problems

• Inverter turned on, green LED on inverter blinking, no output: Inverter is in Search mode. Either defeat Search mode, if not needed, or turn on loads greater than the 02A Search Watts setting.

6.1.2 Charger Problems

• Unit won’t transfer to Charge mode with AC applied: Is CHG (charge) LED on router blinking? If not, then the charger does not recognize the incoming as AC being within acceptable limits. Measure the input AC voltage at the inverter input terminals, it should be 120VAC +/- 20 VAC (230VAC +/- 40 VAC for export models). Also, check that the 03B Low VAC Dropout setting on the router is 80 VAC or less (export models: 160 VAC or less). If the CHG LED is blinking, the transfer relay should be closing within 20-30 seconds, and the unit should begin charging. If the LED is on solid, the relay should be closed, and the charger should begin charging.

• Transfer relay closes, then opens and continues to cycle: AC voltage is too low, or has transients that drop the AC voltage momentarily. Change the Low VAC Dropout setting to 60 VAC (120VAC for export models) and check for improvements. If the cycling continues, back off the charge rate from 100% to 10%.

This cycling may also be caused if the AC output of the inverter is connected to the inverter’s AC input, check for proper input and output AC wiring.

• Charger not charging even though CHG LED is on steady and the unit says “Charging”: Full charge rates are not obtained in “Charging” mode, only after this mode changes to a normal charge stage (e.g., Bulk Charging, Absorb Charging, Float Charging, etc.).

• Charger not charging even though CHG LED is on steady and the unit says “Bulk Charging” (or “Absorb Charging”): Check the DC amps meter and DC voltmeter on the router display. It should be 80% or more of rated charge current if the battery voltage is under 14.0 VDC (28.0 VDC on 24-volt models or 48.0 VDC for 48-volt models). If not, check the SETUP: 03E Max Charge: Rate setting and verify the setting is 80% or greater. Still low charge rate? Remove all the inverter AC loads and check the SETUP: 03A AC Input Amps setting. The SETUP: 03A AC Input Amps setting must be 15 amps (25 amps for 3kW unit) or greater to receive the full charge rate.

• Charger says “Float Charging” not “Bulk Charging” when the AC is first plugged in: Check DC voltmeter on the router display. If the battery is over 13.0 VDC (26.0 VDC for 24-volt models or 52.0 VDC for 48-volt models) then the battery was already charged and the charger automatically goes to Float Charging to keep from overcharging the batteries. Try the Start Bulk setting from the CTRL: 02 Charger Control menu.

• Charge amps are lower than expected, or is 0 amps DC: Measure input AC voltage and increase if the input voltage is under 90 VAC. The charge rate is reduced to keep the input voltage above 90 VAC. Also, check the AC Input Amps and the Max Charge: Rate settings to determine if the current is being limited.

• Charger output voltage is different than expected: This is normal when the Battery Temperature Sensor (BTS) is connected to provide temperature compensated battery charging. If the BTS is installed, the charge voltage settings will increase if the temperature around the BTS is below 77° F (25° C) and decrease if the temperature around the BTS is higher than 77° F (25° C).
6.2 Performing an Inverter Reset

Press and hold the Power ON/OFF button (see Figure 6-1) for approximately fifteen (15) seconds until the Charging/Inverting Status LED comes on and flashes. Once the flashing has begun, release the Power ON/OFF button. The Charging/Inverting Status LED will go off after the button is released. After the inverter reset is completed, press the Power ON/OFF button to turn the inverter ON. Some older inverter models do not allow an inverter reset. If the inverter reset fails, you will need to power-down the inverter using the procedure in Section 6.3 below. In either case, if an internal fault does not clear, the inverter will require repair at a Magnum Energy Authorized Service Center.

Info: The Power ON/OFF button is a small momentary type switch which operates by lightly pressing and releasing.

Info: All adjustable settings in the router (except SETUP: 01B Screen Setup, CTRL: 03 Gen Control and TECH: 07 Show all Menus—which revert back to default) are saved in non-volatile memory and are preserved until changed—even if an inverter reset is performed or if all power to the router or inverter is removed.

6.3 Powering Down the Inverter

Note: The router is normally connected to multiple inverters. The procedure below should be performed on all the inverters in the system (all at once) to ensure a complete system power-down.

To power-down the inverter:

1. Remove all AC power (utility or generator power) to the inverter.
2. Remove any accessories connected to the inverter and/or router.
3. Remove all DC power to the inverter (open all the inverter DC disconnects or disconnect the positive battery cable to the inverter).
4. Remove the router from the inverter—ensure the router display is blank.
5. After all accessory devices have been disconnected from the inverter(s) and the inverters have been disconnected from all power for 30 seconds, reconnect power to all inverters, reconnect all accessory devices and the router, and resume operation.

Info: If DC disconnects are not used, there may be a momentary spark when the positive battery cable is connected to the inverter’s terminal. This is normal and indicates that the inverter’s internal capacitors are being charged.
7.0 Using an AGS Module

The AGS-N menus in the ME-RTR router under the CTRL, METER, SETUP, and TECH buttons allow you to customize and monitor operating parameters, and to help troubleshoot your autostart/autostop generator system. To configure and use the AGS with the ME-RTR, refer to the mini-index below to direct you to the appropriate section.

7.1 ME-AGS-N Setup (with the ME-RTR) page 79
7.2 ME-AGS-N Operation/Monitoring (with the ME-RTR) page 92
7.3 ME-AGS-N Router Troubleshooting (with the ME-RTR) page 103

IMPORTANT: The AGS must be a network version (ME-AGS-N) and must be connected and communicating with the ME-RTR in order to set up and/or control the AGS. If the AGS is not communicating, “No AGS Present” appears when accessing the SETUP/04 AGS Setup or the CTRL/03 Gen Control menus, unless the TECH: 07 Show all Menus menu has been set to “Yes”. Refer to Section 3.3.5 for more info on the TECH: 07 menu.

Info: Even though you can connect a ME-ARC remote control to the ME-RTR and activate the AGS (through the FAVS button), all the AGS’s autostart/autostop settings must be set up in the ME-RTR.

Info: The Auto Connect setting must be selected if a ME-AGS-N is installed and enabled in the system. Otherwise, when the generator is autostarted, it may be prevented from connecting because the criteria to allow the AC input to connect (AC In based on time, VDC, or SOC) may not have been met.

Note: This is true unless you are using an inverter that has two independent AC inputs—one for grid and the other for generator (i.e., MSH4024RE). On the MSH4024RE inverter, the AC In Control features only work with the GRID IN (AC1) input.

7.0.1 Software Differences Between AGS Versions

Even though the router provides a selection/feature or shows a setting, based on the version of your ME-AGS-N, this selection or setting may not be available. Use Table 7-1 to determine if your ME-AGS-N is compatible with the selection or setting you want to use.

Info: Refer to TECH/02 Port Vers (or TECH/03 AccPort Versions)—depending on what port the AGS is connected—to determine the software version in your AGS.
Table 7-1, Software Differences Between AGS Versions

<table>
<thead>
<tr>
<th>AGS Menu (Button: Menu)</th>
<th>AGS Menu Selections/Settings</th>
<th>ME-AGS-N Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL: 03 Gen Control</td>
<td>OFF, ON, AUTO</td>
<td>≥ Vers 5.0</td>
</tr>
</tbody>
</table>

METER: 04 AGS Meters

<table>
<thead>
<tr>
<th>Selection/Settings</th>
<th>Vers. Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>04A AGS Status</td>
<td>≥ Vers 5.0</td>
</tr>
<tr>
<td>04B DC Volts to AGS</td>
<td>≥ Vers 5.0</td>
</tr>
<tr>
<td>04C Gen Run Time</td>
<td>≥ Vers 5.2</td>
</tr>
<tr>
<td>04D AGS Temp</td>
<td>≥ Vers 5.0</td>
</tr>
<tr>
<td>04E Since Run Days</td>
<td>≥ Vers 5.0</td>
</tr>
<tr>
<td>04F Since 100% Days</td>
<td>≥ Vers 5.3</td>
</tr>
<tr>
<td>04G Gen Hour Meter</td>
<td>≥ Vers 5.3</td>
</tr>
</tbody>
</table>

SETUP: 04 AGS Setup

<table>
<thead>
<tr>
<th>Selection/Settings</th>
<th>Vers. Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>04A Gen Run DC Volts</td>
<td>≥ Vers 5.0</td>
</tr>
<tr>
<td>04B Gen Run Time</td>
<td>≥ Vers 5.0</td>
</tr>
<tr>
<td>04C Gen Run AC Amps*</td>
<td>≥ Vers 5.0</td>
</tr>
<tr>
<td>04D Gen Run SOC**</td>
<td>≥ Vers 5.0</td>
</tr>
<tr>
<td>04E Gen Run Temp</td>
<td>≥ Vers 5.0</td>
</tr>
<tr>
<td>04F Max Gen Run Time</td>
<td>≥ Vers 5.2</td>
</tr>
<tr>
<td>04G Gen Quiet Time</td>
<td>≥ Vers 5.0</td>
</tr>
<tr>
<td>04H Gen Exercise</td>
<td>≥ Vers 5.0</td>
</tr>
<tr>
<td>04I Gen No-Load Time</td>
<td>≥ Vers 5.0</td>
</tr>
<tr>
<td>04J Gen 100% SOC</td>
<td>≥ Vers 5.0</td>
</tr>
</tbody>
</table>

TECH: 02 Port Vers (Read Only)

TECH: 03 AccPort Vers (Read Only)

TECH: 04 Fault History

<table>
<thead>
<tr>
<th>Selection/Settings</th>
<th>Vers. Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGS Faults</td>
<td>≥ Vers 5.0</td>
</tr>
</tbody>
</table>

* Only MS-PAE or MS-PE inverters ** Requires the ME-BMK (Battery Monitor)
Using an AGS Module: Setup

7.1 ME-AGS-N Setup (with the ME-RTR)

To access the AGS SETUP menus, press and hold the METER button (~3 seconds) to display the System Home screen. From the System Home screen, press the PORT button, or rotate the SELECT knob to the port# where the AGS is connected (AGS Home screen), and then press the SETUP button. The menus available from this screen allow the generator to be automatically started and stopped based on many different conditions. From Table 7-2, determine the specific autostart and autostop conditions with which you want to control the generator.

Info: The AGS SETUP menus can also be accessed by pressing the SETUP button from the System Home screen, and rotating and pressing the SELECT knob after selecting the 04 AGS Setup menu.

Table 7-2, ME-RTR Autostart/Autostop Matrix

<table>
<thead>
<tr>
<th>Autostart Condition</th>
<th>Autostop Condition</th>
<th>See Setup Menu</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starts on low battery voltage (DC voltage connected to Terminals #3 and #4)</td>
<td>Stops on higher battery voltage</td>
<td>04A Gen Run DC Volts</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Stops at Float Charge after a set time period (using 03D Absorb Done Time setting)</td>
<td>04A Gen Run DC Volts (Set Stop Volts = Float)</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Stops at Float Charge after battery current requirement is low (using 03D Absorb Done Amps setting)</td>
<td>04A Gen Run DC Volts (Set Stop Volts = Float)</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Stops at Float Charge using a battery SOC setting (using 03D Absorb Done SOC setting)²</td>
<td>04A Gen Run DC Volts (Set Stop Volts = Float)</td>
<td>79</td>
</tr>
<tr>
<td>Starts at a set time daily</td>
<td>Stops at a different set time daily</td>
<td>04B Gen Run Time</td>
<td>81</td>
</tr>
<tr>
<td>Starts on high AC amps to an inverter load¹</td>
<td>Stops on lower AC amps to an inverter load¹</td>
<td>04C Gen Run AC Amps</td>
<td>81</td>
</tr>
<tr>
<td>Starts when the battery State of Charge (SOC)² is low</td>
<td>Stops when the battery State of Charge (SOC)² is higher</td>
<td>04D Gen Run SOC</td>
<td>82</td>
</tr>
<tr>
<td>Starts when temperature increases</td>
<td>Stops after a set time period</td>
<td>04E Gen Run Temp</td>
<td>83</td>
</tr>
</tbody>
</table>

Note¹: Only applicable to MS-PAE, MS-PE, MSH-M and MSH-RE Series inverters.

Note²: Autostart/autostop conditions using SOC require the ME-BMK (battery monitor) to be installed.
Using an AGS Module: Setup

SETUP: 04A Gen Run DC Volts Menu
This menu provides the option to start the generator when the battery voltage gets low, and to stop the generator either when the battery reaches a higher voltage level, or when the battery has been fully charged and goes into the Float Charge stage. Using voltage is the most common method of automatically starting and stopping the generator because it is considered the simplest and easiest to understand. The 04A Gen Run DC Volts menu also has start and stop delay settings that minimize nuisance starts/stops to prevent short cycle run times of the generator.

- **Set Gen Run DC Volts (Start Volts)** – This setting will start the generator when the battery voltage (on Terminals #3 & #4 of the AGS) decreases to or below this setting continuously for the duration of the Set VDC Delay Times (Start Delay) setting.

 Default settings:
 - Start Volts = 11.5 VDC (12v), 23.0 VDC (24v), 46.0 VDC (48v)
 - Ranges: Off, 9.0-15.9 VDC (12v), 18.0-31.8 VDC (24v), 36.0-63.6 VDC (48v)

 Where should I set Start Volts? The VDC start voltage must be high enough to not over-discharge the battery, but low enough to keep from nuisance starting the generator. Typically, the start volts setting is set based on what is determined to be approximately 50% of the battery capacity. Since this is an inverter/battery system, and the battery is normally loaded, the VDC used to determine 50% battery capacity should be set lower than what is shown on typical battery voltage SOC charts (approximately 11-11.5 in a 12-volt system), which show the battery at rest (unloaded). A typical start voltage setting would be between 11.0 VDC-11.5 VDC for a 12-volt system.

 Info: The Gen Run DC Volts feature uses the voltage as shown on the METER button’s 04B DC Volts to AGS menu to determine when to autostart and autostop the generator.

 Info: Using a 12-volt battery as an example, a typical SOC (State of Charge) battery chart will show that 12.2 VDC is considered 50% SOC. This voltage is a battery “at rest,” meaning it has no load connected and has been at rest for a minimum of 30 min. While this voltage is accurate under these at rest conditions, this same voltage with a load applied means the battery is well above 50% SOC, and should be set much lower. However, the larger the battery bank the less the voltage will be affected by a load applied to the battery bank.

 Info: When using the 04A Gen Run DC Volts feature, ensure the Set Gen Run DC Volts (Start Volts) setting is higher than the 02B Low Battery Cut Out (LBCO) Volts setting (under SETUP/02 Inverter Setup). This prevents the inverter from shutting down before the generator comes on. The 04A Gen Run DC Volts setting should be high enough to allow sufficient time until the generator is allowed to start (i.e., start delay time) and the inverter is allowed to connect (i.e., warm-up time and AC input delay time). Set the Set Gen Run DC Volts (Start Volts) setting at least 1-volt higher than the inverter’s LBCO setting, and then adjust depending on how long it takes the battery voltage to fall under normal usage conditions.

- **Set VDC Delay Times (Start Delay)** – This setting determines how long the Set Gen Run DC Volts (Start Volts) parameter must be continuously maintained before autostarting the generator. This ensures the generator does not nuisance start. By setting a delay, momentary surges from heavy loads—that can cause the battery voltage to dip—will not start the generator unnecessarily.

 Default setting:
 - Start Delay = 120secs
 - Range: 0-127 Seconds, then 1-127 Minutes

 Where should I set Start Delay? First, determine what loads will be running when the generator needs to start. The larger the load the shorter the delay time setting. When a large load is applied to the battery bank the battery voltage will drop quickly, so the delay time should be short to ensure the batteries are not over-discharged. If you are not sure what loads might be running or where to set the start time delay, error on the side of setting a shorter time such as the default of 2 minutes (to protect batteries from over-discharge).
Using an AGS Module: Setup

- **Set Gen Run DC Volts (Stop Volts)** – This setting will stop the generator when the battery voltage (on Terminals #3 & #4 of the AGS) increases to or above this setting continuously for the duration of the Set VDC Delay Times (Stop Delay) setting. To allow the battery bank to go through a full Bulk and Absorption charge, this setting should be set to Float (Silent).

 Default settings: Stop Volts = 14.4 VDC (12v), 28.8 VDC (24v), 57.6 VDC (48v)
 Ranges: OFF, 9.1-16.0 VDC (12v), 18.2-32.0 VDC (24v), 36.4-64.0 VDC (48v), Float

Where should I set Stop Volts? Typically, when using a generator to charge batteries, most individuals only charge the batteries to 80-85% to compromise between minimizing fuel usage and maximizing battery life. This is done by having the generator start on low battery voltage, and then stop at a higher voltage (i.e., the Stop Volts setting). When deciding where to set the Stop Volts setting, it must be lower than the inverter’s Absorb Voltage setting (determined by the SETUP: 03C Battery Type menu). Otherwise, the charger will enter Absorption Charge mode—which is required to maintain the batteries at a constant voltage level—and the battery voltage will not reach the Stop Volts setting, which will cause the generator to run until it is out of fuel or until it reaches the SETUP: 04F Max Gen Run Time setting.

Therefore, after reading this some will think that they should just set the Stop Volts setting slightly lower than the absorption level to ensure the charger always reaches the Stop Volts setting before it goes into the Absorption Charge mode. However, temperature changes can affect the absorb voltage setting¹ and may require you to readjust the Stop Volts setting seasonally. If you are in a normally cold climate (<32°F), the actual absorb charge voltage will increase. So, the Stop Volts setting should be set well above the absorb voltage setting (~.5V above for 12-volt systems). If you are normally in a hot climate (>95°F), the actual absorb charge voltage will decrease. In that case, the Stop Volts setting should be set well below the absorb voltage setting (~.5V below for 12-volt systems).

A simpler way to charge the batteries to 80-85% and to automatically allow a temperature-compensated charge to the batteries (no seasonal adjustment required) is accomplished using the settings below:

- Set the Stop Volts setting to Float
- Set Absorb Volts (SETUP: 03C Battery Type: Custom setting) to the voltage level at which you want the generator to turn off (normally ~ 14.5 volts for flooded batteries in a 12-volt system)
- Set the Absorb Done Time setting (SETUP: 03D Absorb Done Time) to 0.1 hours (lowest setting)

Using these settings, when the batteries reach a low voltage level the generator turns on (per the Start Volts setting) and charges the battery to the temperature-compensated Absorb Voltage setting. After reaching the absorb voltage level, the inverter/charger goes into Absorption Charge mode and is there for only 6 minutes (0.1 hours) before it goes to Float Charge mode. Once the inverter/charger enters Float Charge mode, the AGS will autostop the generator.

Info: Battery life will be reduced if the batteries are regularly only charged to 80-85%. It is highly recommended to charge the batteries to 100% as often as possible (~ once a week, or every other discharge cycle) in order to avoid sulfation of the battery plates. Using the SETUP: 03D Absorb Done Time menu, the absorption charge time can easily be changed to a longer duration to increase the batteries’ state of charge.

Note: If a ME-BMK (Battery Monitor) is installed in the system, refer to the SETUP/04J Gen 100% menu, which can be used to autostart the generator and to periodically charge the battery to 100%.

- **Set VDC Delay Times (Stop Delay)** – This setting determines the amount of time the battery voltage must be above the Stop Volts setting continuously before the AGS will autostop the generator.

 Default setting: Stop Delay = 120secs
 Range: 0-127 Seconds, then 1-127 Minutes

Note¹: When the inverter’s BTS is connected, the actual absorb charge voltage will increase or decrease to ensure correct charging as the battery temperature changes.
Using an AGS Module: Setup

SETUP: 04B Gen Run Time Menu
This menu starts and stops the generator based on a specific time of day. This feature uses the ME-RTR's internal clock to start and stop the generator at the selected times.

- **Info:** Ensure the router’s clock is correct. Refer to Section 3.3.4 for guidance on setting the time on the router clock.
- **Info:** The ME-RTR clock is powered from the inverter thru the remote cable. If the ME-RTR or inverter loses power, the clock will lose the correct time and must be reset.

- **Set Gen Run Time (Start Daily)** – This setting allows you to set a time at which the generator automatically turns on each day. Select OFF to disable the Gen Run Time feature.
 - **Default setting:** Start Daily = OFF
 - **Range:** OFF, 12:00AM-11:45PM (15 minute increments)

- **Set Gen Run Time (Stop Daily)** – This setting allows you to set a time at which the generator automatically turns off each day.
 - **Default setting:** Stop Daily = 12:00AM
 - **Range:** 12:00AM-11:45PM (15 minute increments)

Why would you want to start/stop the generator daily? Starting/stopping at a particular time of day is useful if you want to run the generator for other uses while charging the batteries. You may require the generator to run a heavy load (like a well pump or machinery) every day at the same time; or, to run while at work each day to have charged batteries when you get home, and to avoid having to hear it run.

SETUP: 04C Gen Run AC Amps Menu
This menu starts the generator based on the amount of AC amps needed to handle the load the inverter is running.

- **Info:** The METER button’s 02C System AC Amps (AC Load) menu is used to determine how much load the inverter is currently running when in Inverter mode.
- **Info:** The 04C Gen Run AC Amps menu is only applicable to Magnum’s MS-PAE, MS-PE, and MSH Series inverters.

- **Set Gen Run AC Amps (Start AC Amps)** – This setting determines when the generator would start depending on the AC amps level of the load the inverter is running. The load’s amps level must be continuously maintained above the Start AC Amps setting for the duration of the Start Delay setting in order for the generator to autostart.
 - **Default setting:** Start AC Amps = OFF
 - **Range:** OFF, 5-60 Amps

- **Set Amps Delay Time (Start Delay)** – This setting determines the amount of time that the inverter load’s current must continuously remain above the Start AC Amps setting for the AGS to initiate an autostart.
 - **Default setting:** Start Delay = 120secs
 - **Range:** 0-127 Seconds, then 1-127 Minutes

- **Set Gen Run AC Amps (Stop AC Amps)** – This setting determines when the generator would stop depending on the drop in the AC amps level of the load the inverter is running. The load’s amps level must be continuously maintained below the Stop AC Amps setting for the duration of the Stop Delay setting in order for the generator to autostop.
 - **Default setting:** Stop AC Amps = 4 Amps
 - **Range:** 4-59 Amps

- **Set Amps Delay Time (Stop Delay)** – This setting determines the amount of time the AC load must continuously remain below the Stop AC Amps setting before the generator autostops.
 - **Default setting:** Stop Delay = 120secs
 - **Range:** 0-127 Seconds, then 1-127 Minutes
Using an AGS Module: Setup

Why would I use Gen Run AC Amps? This feature is designed to prevent the battery from being heavily discharged by monitoring the battery current used to power the inverter loads (shown in AC amps). When the AC current exceeds the *Start AC Amps* setting, a generator autostart is initiated. After the generator connects to the inverter, the current from the generator is now used to run the loads instead of the battery current. This feature is useful when there is occasionally a large load or combinations of loads that the inverter is able to run, but by doing so would quickly deplete the battery bank. Typically, these large loads might be motors, well pumps, A/C units, or freezers.

Info: The 04C Gen Run AC Amps feature is not designed to turn on the generator to power loads above the capacity of the inverter. If attempting to run loads above the inverter capacity, the inverter may overload and shut down before the generator can autostart and power the heavy load thru the inverter.

Where should I set Gen Run AC Amps? Typically, the generator should autostart when the AC load amps is >70-75% of the inverter AC current output rating¹. This keeps the inverter from running too large a load and also keeps the batteries from cycling unnecessarily. Set *Stop AC Amps* just below the start amps to ensure the large load has turned off. Set the start delay time so surge loads don’t trigger a false start, and the stop delay time is long enough to ensure the load has turned off.

Example: In this scenario, most AC loads typically do not exceed 20A when in Inverter mode. When a freezer or well pump starts, the load exceeds 30A so the battery voltage starts to quickly drop. Instead of cycling the batteries to a low voltage, set *Start AC Amps* to 25A with a *60-second* delay (using *Start Delay* setting). Set the *Stop AC Amps* menu to 20A with a *60-second* delay (using *Stop Delay* setting). After 60 seconds of detecting a larger than 25A load on the inverter, the generator autostarts and powers the loads and recharges the batteries. Once the AC amps load drops below 20A for 60 seconds, the gen turns off.

SETUP: 04D Gen Run SOC Menu

This menu starts and stops the generator based on the SOC (State of Charge) reading from the attached battery monitor, as shown on the METER button’s *05A BMK SOC* display. This is the best method for using AGS settings to start/stop your generator. Since the ME-BMK already uses voltage, time, and current to determine the true SOC of the batteries, there is little guesswork or calculating needed to determine what settings to use.

- **Set Gen Run SOC (Start SOC)** – This menu sets the SOC level for autostarting the generator.
 Default setting: *Start SOC = OFF*
 Range: *OFF, 20%-99%*
- **Set Gen Run SOC (Stop SOC)** – This menu sets the SOC level for autostopping the generator.
 Default setting: *Stop SOC = 90%*
 Range: *21%-100%*

Info: There is no start or stop delay time needed since the ME-BMK already displays an accurate state of charge of the batteries.

Info: The optional Battery Monitor Kit (ME-BMK or ME-BMK-NS) must be installed and enabled to use the *04D Gen Run SOC* autostart/autostop feature.

Info: When using the *04D Gen Run SOC* autostart/autostop feature, the generator autostarts and runs until the battery bank has reached the *Stop SOC* setting or the AGS’s *SETUP: 04F Max Gen Run Time* setting is reached, whichever occurs first. Ensure the charger never leaves the Bulk/Absorption charge mode. This is done by ensuring the *SETUP: 03 Absorb Done* selection is “SOC” and the setting is greater than or equal to the *Stop SOC* setting; and either set the *Max Gen Run Time* setting to *OFF*, or set it long enough to ensure the generator is able to run until the battery is fully charged. If the charger is allowed to exit the Bulk/Absorption charge mode (i.e., go to Float/Silent), the battery SOC may never reach 100%.

Note¹ – For a 4000 watt inverter, this would mean setting *Start AC Amps* at 25A.
Using an AGS Module: Setup

Info: The METER: 05 BMK Meters/05A BMK SOC meter must have a valid SOC number for the 04D Gen to determine when to start and stop based on the battery SOC. Under the METER/05 BMK Meters/05A BMK SOC menu, Think’n, No Comm, or any BMK fault (i.e., Factory Fault, Power-up Fault, or Unknown Fault ##) are not valid SOC numbers.

Info: When the 04D Gen Run SOC feature is enabled and a generator SOC start is triggered, the router issues a one-time “Start Bulk” command to the inverter/charger. This ensures—after the generator connects—that regardless of battery voltage, a Bulk/Absorb charge cycle is started.

Where should I set Gen Run SOC? Most battery manufacturers recommend that for optimum battery life, deep-cycle batteries should not be discharged below 50% SOC. The ME-BMK determines the battery’s SOC by using a DC shunt to measure the flow of current in and out of the battery. Many refer to a SOC meter as a “fuel gauge” for your batteries, since this meter gives you an accurate reading of how much capacity is remaining in the battery bank.

Set the Start SOC level to 50%, or to 60% if you do not want to discharge the batteries quite as much. When considering the Stop SOC setting, keep in mind that running the generator past 90% SOC delivers very little current to get that last 10% into the batteries. Thus, it is common to stop the generator at 90% to save fuel and run time on the generator. However, if the SOC stop setting is less than 100%, the batteries should be charged to 100% as often as possible (~ once per week, or every other discharge cycle) in order to avoid sulfation of the battery plates (see the SETUP: 04J Gen 100% SOC Start feature).

SETUP: 04E Gen Run Temp Menu

This menu allows you to automatically start the generator, either from an external temperature sensor, or by receiving an external input command from an A/C thermostat—typically, to power an A/C unit for cooling—based on an increase in temperature.

Note: This temperature autostart feature requires that the AGS’s remote temp sensor cable or an optional ME-PT1 or ME-PT2 pigtail adapter be connected to the AGS’s REMOTE (purple) port.

Info: The optional ME-PT1 or ME-PT2 pigtail adapters can be used to connect an A/C or relay control circuit. For more info, refer to the instruction sheet for each pigtail adapter (part number 64-0025 for ME-PT1 instructions, or 64-0026 for ME-PT2 instructions).

- **Set Gen Run Temp (Start Temp)** – This menu enables and sets the temperature that triggers a generator autostart. If the temp start feature is not needed, set to the OFF position.

 Default setting: Start Temp = OFF

 Range: OFF, ExtInput, 65F-95F (18C-35C*)

 ◇ **ExtInput** – This setting is used when an optional pigtail adapter (ME-PT1, or ME-PT2) is used. When an AGS pigtail adapter is connected to the AGS’s REMOTE port, an external command—either from a thermostat connection on an air conditioner control circuit or external relay control circuit—is recognized and causes the AGS to begin a generator autostart sequence. Once the external command is no longer recognized, an autostop sequence is given and the generator stops after a minimum two-minute delay.

 ◇ **65F – 95F (18C – 35C)** – These settings determine the rising temperature value that triggers a generator temperature autostart.

 Default setting: Start Temp = 65F (18C*)

 Range: 65F-95F (18C-35C*)

 - **Set Gen Run Temp (Run Time)** – This menu sets the amount of time the generator runs after a temperature autostart when using the remote temperature sensor.

 Default setting: Run Time = 2.0 Hrs

 Range: 0.5-25.5 Hrs (0.5 hr increments)

Info: The Run Time in this menu uses the METER button’s 04C Gen Run Time display to determine the generator’s run time.

Setting shown in Celsius if SETUP/01 System Setup/01D Temp Display has ‘Celsius’ selected.
Using an AGS Module: Setup

How does the Gen Run Temp feature work? When the temperature around the remote temperature sensor (based on the METER: 04D AGS Temp display) increases to the Gen Run Start Temp setting, the generator immediately starts and runs based on the Gen Temp Run Time setting. When this run time period is finished, the temperature sensor reading is checked. If the temperature sensor (or thermostat control if using optional pigtail adapter) reading is below the Start Temp setting, the generator will autostop. If the temperature sensor (or thermostat control) reading is above the Start Temp setting, the generator will continue to run for a another run time period. At the end of this run time period, the temperature sensor reading (or thermostat control) is checked again. If the temperature sensor reading is still above the Start Temp setting, the generator will continue to run as long as the CTRL: 03 Gen Control menu is set to AUTO and the SETUP: 04F Max Gen Run Time setting has not been reached.

Why would I use Gen Run Temp? Typically, in a mobile application such as in an RV or on a boat where the air conditioning (A/C) unit is too much power for the inverter to run from the batteries, this feature is used to start a generator to run the A/C unit. Many RV and marine customers travel with pets and they do not want to leave the pets inside on a hot day. With this feature, you could set the A/C unit to turn on and leave. Whenever the inside temperature rises to the start setting, the AGS commands the generator to autostart; which provides power to the A/C unit so that it can now run and cool the pet area. This would keep the area cool and comfortable—plus, while the generator is on, the inverter batteries are being charged.

Should I use the Remote Temperature Sensor or the External Input? If your A/C unit provides a thermostat connection or you want to set up an external relay control circuit, then the external input (ExtInput) selection will work for you. When using the external input setting, you must connect an optional AGS pigtail adapter (ME-PT1 or ME-PT2) to the AGS’s REMOTE port. When the pigtail adapter recognizes an external command, the AGS will begin a generator autostart sequence.

Info: The ME-PT1 requires a +12-volt to common ground input, and the ME-PT2 requires a two-terminal dry contact input.

Without any connection to an external control circuit, the remote temperature sensor cable must be used. This cable is provided with the AGS and is 60’ in length with the sensor wired to the end and covered with heat shrink. The sensor must be placed in the location that is required to be monitored for temperature and the Gen Run Temp Start setting must be set.

Where should I set Gen Run Temp Start? If you are using this feature to power an A/C unit, the Start Temp setting should be slightly above the temperature setting of the thermostat controlling the air conditioner unit—to ensure the A/C unit will run once the generator starts. Once the Start Temp setting is reached, the generator will start providing power to the A/C unit. If the Start Temp setting is below that of the A/C unit’s thermostat setting, the generator could be commanded to autostart; but because the thermostat has not reached its start temperature, the A/C unit wouldn’t have turned on yet. In other words, your generator would be running, but the A/C unit would not be running—resulting in wasted fuel and the area not being cooled down.

Info: If using the temperature autostart feature to start a generator that is powering two air conditioners, it is suggested that the second air conditioner’s thermostat be set 2° to 5° higher than the first air conditioner. This staggered setting allows the first air conditioner to start and run in an effort to keep the coach cool. If the temperature continues to rise inside the coach, the second air conditioner would then turn on.

How long should I set the Gen Run Temp Time? When using the remote temperature sensor cable and setting the Gen Run Temp Start temperature, the Run Time setting must be set. When the temperature rises to the Start Temp setting, the generator autostarts and runs until either the Run Time setting or the SETUP: 04F Max Gen Run Time when Autostarted setting is reached, whichever occurs first. At the end of the Run Time setting, the temperature around the sensor is checked. If the temperature is still above the Temp Start setting, the generator will continue to run for another Run Time setting. This means you could set the time to the lowest time setting (0.5 Hrs), knowing the generator will attempt to run until the temperature setting is met.
SETUP: 04F Max Gen Run Time when Autostarted Menu

This menu is used to set the maximum time the generator will run if autostarted.

- **Max Gen Run Time when Autostarted** – Sets the maximum amount of time you want the generator to run once it has been autostarted.

 Default setting: Max Gen Run Time when Autostarted = 12.0 Hrs

 Range: OFF, 0.1-25.5 Hrs (0.1 hr increments)

Why use Max Gen Run Time? This setting ensures the generator does not run longer than desired after an autostart. Designating a max run time ensures that the gen will stop if the autostop setting cannot be satisfied. For example, if you know the fuel capacity of your generator is 5 hours, set the Max Gen Run Time setting to 4.5 hours to ensure the generator does not run out of fuel.

Info: When the generator autostarts, it will stop when the autostop parameter for that particular setting has been satisfied. For example, if the generator starts due to the 04A Gen Run DC Volts menu’s autostart setting, it stops when the Stop Volts autostop setting is satisfied; unless the Max Gen Run Time setting has been reached. The Max Gen Run Time setting overrides any autostop setting and causes the fault LED to come on and displays the Fault MaxRn status. If this happens, you may have to increase the Max Gen Run Time setting or adjust the autostop setting to finish sooner. If multiple autostart settings are set and a Fault MaxRn status occurs, refer to the METER button’s 04A AGS Status menu to identify which condition autostarted the generator. This way you will know which auto condition is running longer than the Max Gen Run Time setting.

Info: The Max Gen Run Time menu uses the METER button’s 04C Gen Run Time display to determine the generator’s run time.

Info: If the generator is stopped due to the Max Gen Run Time parameter being met, the status becomes Fault MaxRn, and will not autostart again until you clear the fault by selecting OFF under the CTRL:03 Gen Control menu.

SETUP: 04G Gen Quiet Time Menu

This menu is used to enable the Quiet Time feature and to set the period of time each day in which the generator is not allowed to automatically run. The generator is prevented from autostarting during the Quiet Time period. Also, if any autostart parameter in the 04 AGS Setup menus has been met and the generator is running when the Quiet Time start setting is reached, the generator will turn off. The generator will not try to autostart until the Quiet Time stop setting has been reached and an autostart condition is once again satisfied.

Info: The ME-RTR contains a real time clock that must be set for proper operation of the SETUP: 04G Gen Quiet Time menu feature.

- **Set Gen Quiet Time (Begin Quiet)** – Set the time you want Quiet Time to begin.

 Default setting: Begin Quiet = OFF

 Range: OFF, 12:00AM-11:45PM (15 minute increments)

- **Set Gen Quiet Time (End Quiet)** – Set the time you want Quiet Time to end.

 Default setting: End Quiet = 10:00AM

 Range: 12:00AM-11:45PM (15 minute increments)

- **Set Time to Topoff Battery before Quiet Time** – This menu sets the time period the generator will autostart and run before Quiet Time begins. The generator will only start on Quiet Time topoff if the battery voltage is within 0.3 volts¹ or less of reaching the 04A Gen Run DC Volts start parameter, or the battery’s SOC is within 4% or less of reaching the 04D Gen Run SOC start parameter².

 Default setting: Set Time to Topoff Battery before Quiet Time = OFF

 Range: OFF, 30-120 Minutes (30 minute increments)

Note¹: This voltage is scaled depending on your battery system; ≤0.3 for 12-volt systems, ≤0.6 for 24-volt systems, and ≤1.2 for 48-volt systems.

Note²: Requires the optional Battery Monitor Kit (ME-BMK or ME-BMK-NS) to be installed and enabled.
Why would I use Quiet Time? Quiet Time is used when there are park rules or local regulations that prevent generators from running (e.g., noise requirements during sleep hours). If there are no local rules or regulations, you may not want to use Quiet Time—which would allow the generator to run at any time in a 24-hour period.

Where should I set Quiet Time? Set the Quiet Time begin and end settings to coincide with local noise requirements, or for a specific time period that you do not want the generator to automatically run each day.

What is Quiet Time Topoff? The Quiet Time Topoff feature charges the battery prior to the start of Quiet Time in an attempt to prevent the inverter from shutting down from a low battery condition during the entire Quiet Time period. The Quiet Time Topoff feature is enabled whenever you select a time under the Set Time to Topoff Battery before Quiet Time menu.

The Set Time to Topoff Battery before Quiet Time (or “topoff time period”) determines how long the battery voltage is monitored before the start of Quiet Time. During the topoff time period, if the battery voltage is 0.3 volts¹ or less of reaching the 04A Gen Run DC Volts start parameter, the generator will automatically start and charge the batteries before Quiet Time turns the generator off.

If an optional Battery Monitor Kit (ME-BMK or ME-BMK-NS) is installed and enabled, the Quiet Time Topoff feature will also autostart the generator if the battery’s SOC is within 4% or less of reaching the 04D Gen Run SOC start parameter during the topoff time period.

Where should I set Quiet Time Topoff? Normally, setting Quiet Time topoff to 30 or 60 minutes is a good idea. In cases where the DC or inverter loads are unusually high or the SOC autostart setting is low—which may cause the batteries to be heavily discharged during the Quiet Time period—you may want to increase Quiet Time topoff to 90 or 120 minutes; this ensures the batteries receive the maximum charge time before Quiet Time shuts the generator off.

Info: When the generator starts on QT topoff, it continues running until it reaches the Quiet Time start parameter—even if the VDC or SOC autostop parameter is reached.

Scenario example (Topoff based on battery voltage): The 04A Gen Run DC Volts menu is set to start at 11.5 VDC, Quiet Time is set to start at 10PM, and the Quiet Time topoff setting is 60 min. At 9PM, the battery voltage reaches 11.8 VDC; because the Quiet Time Topoff feature is enabled (60 min.) and the battery voltage is within 0.3 volts of the 04A Gen Run DC Volts start setting, the generator autostarts to allow the batteries to charge for 60 minutes before Quiet Time turns the generator off.

Scenario example (Topoff based on battery SOC¹): The 04D Gen Run SOC menu is set to start at 60%, Quiet Time is set to start at 10PM, and the Quiet Time topoff setting is 120 min. At 8PM, the battery SOC reaches 64%; because the Quiet Time Topoff feature is enabled (120 min.) and the battery’s SOC is within 4% of reaching the 04D Gen Run SOC start setting, the generator autostarts to allow the batteries to charge for at least 120 minutes before Quiet Time turns the generator off.

Note¹: This voltage is scaled depending on your battery system; ≤0.3 for 12-volt systems, ≤0.6 for 24-volt systems, and ≤1.2 for 48-volt systems.
Setup: 04H Gen Exercise Menu

This menu allows the generator to run (or “exercise”) after it has not been operated for a period of time. The generator is automatically started at a pre-selected time whenever it exceeds a set number of days without running.

Once the start command is initiated, the generator starts and runs to help it remain operational and to allow the generator’s starting battery to be charged.

Info: The ME-RTR contains a real time clock that must be set for proper operation of the Setup: 04H Gen Exercise menu feature.

- Set Gen Exercise (Start Gen Days) – This menu sets the maximum number of days the generator is allowed to sit without running. If the generator has not run in this number of days, the exercise parameters will start the generator. The Start Gen Days setting must be between 1-255 days in order to enable the Gen Exercise feature.

 Default setting: Start Gen Days = OFF
 Range: OFF, 1-255 Days

- Set Gen Exercise (Start Time) – This menu sets the time of day the generator starts once it reaches the Start Gen Days setting.
 Range: 12:00AM-11:45PM (15 minute increments)

- Set Gen Exercise (Run Time) – This menu sets the maximum number of hours the generator will run once started by the Start Gen Days and Start Time settings.
 Range: 0.1-25.5 Hrs

Why should I use Gen Exercise? Exercising your generator is one of the most overlooked aspects of routine maintenance, yet it’s the simplest to perform. Regularly exercising your generator keeps engine seals and components lubricated, prevents oxidation of electrical contacts, uses up fuel before it deteriorates, heats up the generator windings to eliminate moisture buildup, helps ensure the generator’s starting battery is maintained at an optimal state of charge, and in general, helps provide reliable engine starting. If long periods of time elapse without using your generator (remains connected to external AC power), or if you only use your generator a few days out of the year, enabling the Gen Exercise feature is recommended.

How often and how long should I exercise my generator? To maximize reliability and minimize repairs, exercise your generator at least once per month. This applies to both gas and diesel generators. When generators sit unused for as little as 30 days moisture can build up. Also, the fuel in gasoline-powered generators can begin to break down into gums and varnishes that clog the fuel system. Fuel varnishing results in hard starting and surging—a surging generator may not settle at a stable operating speed. Always check with your generator’s manufacturer to determine how to properly exercise your generator. Generally, it is recommended that you run the generator every month for two hours under at least half the rated load. For example, with a 5,000 watt generator, turn on a load(s) that is about 2,500 watts, and let it run continuously for two hours. It is always best to run the generator for longer periods of time, rather than for multiple short periods.

How does the Gen Exercise feature work? The Gen Exercise feature allows the generator to autostart at a pre-selected time (Start Time setting) whenever it has not run for a set number of days (Start Gen Days setting). Once the Gen Exercise feature is enabled—by setting the Start Gen Days setting—the generator will start and begin exercising only after two conditions are met. First, the generator must not have run for a set number of days (i.e., the days shown under the Days Since Run timer must be equal to or greater than the Start Gen Days setting). Second, the generator’s exercise time of day (Start Time setting) must occur.

Info: When the generator starts and runs per the gen exercise criteria, the generator power passes thru the inverter to the inverter loads—if the inverter is enabled to accept AC power on its input—and also charges the inverter batteries (if the charger is enabled).

Info: The Gen Exercise feature identifies the number of days since the generator has last run by using the Since Run Days timer—see Meter: 04E Since Run Days display.
Using an AGS Module: Setup

Example of a Gen Exercise Scenario:
Under SETUP: 04H Gen Exercise menu, set to: Start Gen Days = 3, then set Start Time = 8:30AM, and then set Run Time = 1.0 Hours.
Under CTRL: 03 Gen Control, set to AUTO.

First required condition: The Days Since Run timer must have accumulated to at least 3 days (Start Gen Days = 3). On Day 1, the generator was manually started and stopped at 2:00PM. The stop time (2:00 PM) is the starting point for the Days Since Run timer to begin counting days—the Days Since Run timer displays 0 Days. On Day 2 at 2:00 PM, 24 hours have accumulated since the generator has last run—the Days Since Run timer displays 1 Day. On Day 3 at 2:00 PM, 48 hours have accumulated since the generator last ran—the Days Since Run timer displays 2 Days. On Day 4 (3rd day since the generator was manually started) at 2:00PM, 72 hours (or 3 days) have now accumulated since the generator has last run—the Days Since Run timer now displays 3 Days. The first required condition—which is how many days must pass before the generator hasn’t run—has been met.

Second required condition: The router’s clock must now go to 8:30 AM (Set Gen Exercise: Start Time = 8:30A) before the generator can autostart. On Day 5 at 8:30AM (Days Since Run timer displays 3 Days), the second required condition is met and the generator automatically starts and runs for 1 hour (Set Gen Exercise Run Time = 1.0 Hrs).

Info: If the generator does not start (e.g., AGS fault, gen runs out of fuel, etc.,) despite the gen exercise start criteria being met, an additional day must increment before another attempt is made.

SETUP: 04I Gen No-Load Time Menu
This menu’s warm-up setting allows the generator to run (i.e., warm up) before it connects to the inverter/charger, or powers the battery charger and any pass-thru loads. Most generators need to warm up before a load is supplied—similar to warming up your car before driving it.
This menu’s cooldown setting allows the generator to continue to run unloaded after it disconnects from the inverter and prior to autostopping (i.e., cool down). Allowing the generator to cool down after the load is disconnected helps to prolong generator engine life (esp. diesel engines w/turbos).

• Set Gen No-Load Time (Warm-up) – This setting is the amount of time the generator is allowed to warm up before connecting to the inverter/charger.
 Default settings: Warm-up = 60 secs
 Ranges: 0-127 Seconds, then 1-127 Minutes

Where should I set Gen Warm-up Time? Check with your generator manufacturer. Typically, smaller generators (~2-3 KW) need at least 60 seconds to warm up before applying a load; larger generators require a longer warm-up time.

• Set Gen No-Load Time (Cooldown) – This setting is the amount of time the generator is allowed to cool down after it disconnects from the inverter/charger.
 Default settings: Cooldown = 60 secs
 Ranges: 0-127 Seconds, then 1-127 Minutes

Where should I set Gen Cooldown Time? Check with your generator manufacturer. Typically, smaller generators (~2-3 KW) need at least 60 seconds to cool down after being disconnected from a load; larger generators require a longer cooldown time.

Info: The warm-up and cooldown features prevent the generator from connecting to the inverter’s AC input. Since the inverter only has a single-source input, it cannot distinguish between grid or generator input. So, during the warm-up or cooldown time, the inverter will prevent any AC input from connecting. Also, when either warm-up or cooldown is activated, any AC source (i.e., grid or generator) connected to the inverter’s AC input will disconnect until the time period (warm-up or cooldown) is over.
SETUP: 04J Gen 100% SOC Start Menu

This setting allows the AGS to autostart the generator at a pre-selected time of day—whenever a set number of days have passed since the battery bank has been charged to 100% SOC.

Info: The optional Battery Monitor Kit (ME-BMK or ME-BMK-NS) must be installed and enabled to use the Gen 100% SOC Start feature.

- **Set Gen 100% SOC (Start Gen Days)** – This menu sets the maximum number of days the generator waits before autostarting and fully charging the battery bank to 100% SOC. If the battery bank has not been fully charged to 100% SOC in this number of days, the AGS starts the generator at a pre-set time of day.

 Default setting: Start Gen Days = OFF

 Range: OFF, 1-255 Days

 Info: The Start Gen Days setting must be between 1-255 days in order to enable the Gen 100% SOC Start feature.

- **Set Gen 100% SOC (Start Time)** – This menu sets the time of day the generator autostarts once the Start Gen Days setting is met.

 Range: 12:00AM-11:45PM (15 minute increments)

Why should I use the Gen 100% SOC Start feature? In installations that primarily use a generator to charge the battery bank, the generator run time is usually limited in order to save on fuel costs, which does not allow the battery bank to be fully charged. If this situation persists (where the batteries never reach full charge), some reduction in the battery life will occur. This feature helps to maximize the life of the batteries.

How many days should I wait to fully charge my battery bank? Most battery manufacturers recommend that the batteries be fully charged each time to ensure maximize battery life. With this in mind, select the amount of days that gives you a good balance between reducing fuel consumption and maximizing battery life. If the batteries are discharged heavily each day, then a full charge would need to occur more often—maybe every 3-4 days. If the batteries are discharged lightly each day, then a full charge may only be needed once every week or two. Monitor your battery system to adjust the days to find the best compromise.

How does the Gen 100% SOC Start feature work? This feature allows the generator to autostart at a pre-selected time of day if the battery hasn’t been charged to 100% SOC (per the ME-BMK battery monitor) for a set number of days. Once this feature is enabled (by setting Start Gen Days value), the generator will start only after two conditions are met. First, the battery hasn’t been charged to 100% SOC for a set number of days. This is determined by monitoring the BMK’s METER: 05I Days Since 100% SOC value, which must be equal to or greater than the Start Gen Days setting. Second, the 100% SOC start time of day (i.e., Start Time setting) must occur.

 Info: When using the Gen 100% SOC Start autostart feature, the generator autostarts and runs until the battery bank has reached 100% SOC or the AGS’s SETUP: 04F Max Gen Run Time setting is reached, whichever occurs first. Ensure the charger never leaves the Bulk/Absorption charge mode. This is done by ensuring the SETUP: 03D Absorb Done selection is “SOC” and the setting is 100% (Absorb Done SOC = 100%), and either setting the Max Gen Run Time setting to OFF or setting it long enough to ensure the generator is able to run until the battery is fully charged. If the charger is allowed to exit the Bulk/Absorption charge mode (i.e., go to Float/Silent), the battery SOC may never reach 100%.

 Info: The Gen 100% SOC Start setting uses information from the BMK’s METER: 05I Days Since 100% SOC menu to determine how many days have passed since the battery bank has not been charged to 100% SOC. A valid SOC number must be displayed under the METER: 05A BMK SOC menu for the BMK’s METER: 05I Days Since 100% SOC menu to accumulate and display days. Think’n, No Comm, or any BMK fault (i.e., Factory Fault, Power-up Fault, or Unknown Fault ##) are not valid SOC numbers.
Using an AGS Module: Setup

Info: When the SETUP button’s 04J Gen 100% SOC Start feature is enabled and a generator SOC start is triggered, the router issues a one-time “Start Bulk” command to the inverter/charger. This ensures—that regardless of battery voltage, a Bulk/Absorb charge cycle is started.

Info: When using the SETUP button’s 04J Gen 100% SOC Start feature, set the **CTRL: 01 AC In Control** menu to **Auto Connect**. This ensures the generator—once autostarted—will connect and charge the battery.

Info: The ME-RTR contains a real time clock that must be set for proper operation of the SETUP: 04J Gen 100% SOC Start feature.

Info: Once the BMK’s **METER: 05A SOC** menu displays 100%, the AGS stops the generator and the BMK’s **METER: 05I Days Since 100% SOC** display resets to 0 Days.

Info: If the generator does not start (e.g., AGS fault, gen runs out of fuel, etc.,) despite the gen SOC start criteria being met, an additional day must increment before another attempt is made.

7.1.1 ME-AGS-N Functional Tests using the ME-RTR

Once you have used your router to establish all the autostart/autostop settings you need, perform the following tests to verify that the AGS system is functioning correctly and the communication from the router/inverter to the ME-AGS-N is correct.

7.1.1.1 Determining AGS Status

To access the AGS Home screen:

1. Press and hold the METER button for 3 seconds. The System Home screen displays.
2. Rotate the SELECT knob (or press the PORT button) to the port# to which the AGS is connected.
 - **Info:** The AGS status can also be viewed by pressing the METER button, rotating the SELECT knob to the **04 AGS Meters** menu, and then pressing the SELECT knob and rotating it to the **04A AGS Status** menu.

 The AGS’s status should be Gen Off (Off) or Gen Ready (Redy). If it displays either status, then the router/inverter is correctly communicating with the AGS. If the AGS status displayed is not Off or Redy, then refer to Section 7.3.2 “Resolving AGS Faults using your Router” for assistance.

7.1.1.2 Starting the Generator from the Router

Before proceeding, ensure the AGS status is **Off or Redy** (see Section 7.2.1).

1. Press the CTRL button, and then turn the SELECT knob to the **03 Gen Control** menu.
2. Press the SELECT knob, and then rotate it to the **ON** setting.
3. Press the SELECT knob again to turn on the generator.

 Info: Once the generator starts, it should run until you change the **03 Gen Control** setting to **OFF**.

If your AGS/gen system started, and the STATUS LED on the AGS module turns solid green (after two minutes), then the wiring from the AGS to the generator is correct. You are now ready to enable the AGS by setting the 03 Gen Control setting to “AUTO” in your router (see Section 7.2.1). If the router displays a generator fault, or the AGS module’s STATUS LED continues to blink or shows a fault condition (solid red LED indication), refer to your AGS owner’s manual for assistance.

Info: A solid green STATUS LED means the generator has successfully started and is providing the generator run sense signal to the AGS module.

Info: If the generator attempted to start but did not run, continue to wait—the AGS will attempt to start the generator three more times. If the generator fails to start after four attempts, the STATUS LED will turn red—indicating a fault.
7.2 ME-AGS-N Operation/Monitoring (with the ME-RTR)

This section covers the AGS menus under the router’s CTRL and METER buttons that determine how to control and operate the generator. The section also includes menus that are used to help monitor the AGS and the generator’s starting/running conditions.

7.2.1 Controlling the AGS using the ME-RTR

The AGS uses the CTRL: 01 AC In Control menu to ensure the incoming AC from the generator will be connected, and the CTRL: 03 Gen Control menu is used to activate the generator either manually or automatically. Press the CTRL button on the ME-RTR router to access the 01 AC In Control and the 03 Gen Control menus.

CTRL: 01 AC In Control

The 01 AC In Control menu determines the condition in which the inverter/charger connects to an incoming AC power source. When using a ME-AGS-N, the Auto Connect setting must be selected. If another AC In Control setting is enabled, the inverter/charger may be prevented from connecting—when the generator is autostarted—because the criteria to allow the AC input to connect (AC In based on time, VDC, or SOC) may not have been met.

Note: This is true unless the inverter has two independent AC source inputs—one for grid and the other for generator—as provided in the MSH4024RE. If you are using a MSH4024RE, then you can select any AC In selection that is appropriate for your application, because the AC In Control features only work with the GRID IN (AC1) input.

CTRL: 03 Gen Control

This menu is used to manually turn the connected generator on and off, or to select the AUTO feature which enables the active generator autostart and autostop settings to control the connected generator. Available selections are:

- **OFF**: This selection turns the generator off if it is running from either a manual "ON" command or an "AUTO" start command. When OFF is selected, the AGS is prevented from starting the generator automatically. This is the default setting.

 Info: When OFF is selected, the AGS turns off immediately without any cooldown time (if set). However, if the generator is manually started from a generator control panel or a generator remote panel, selecting OFF may not shut down the generator.

 Info: If DC power is lost to the router or to the inverter system, this menu resets to the default OFF position for safety.

- **ON**: This selection manually starts the generator by sending a “start” command from the AGS. Once the generator is started, it must be manually stopped, either from an external stop switch or by selecting OFF from the 03 Gen Control menu, which sends a “stop” command from the AGS module.

 Info: When ON is selected, the Magnum inverter will not attempt to accept the generator AC voltage until the warm-up period is satisfied.

 Info: The generator can be manually started and then automatically stopped. First, select ON from the 03 Gen Control menu to manually start the generator. Once the generator is running, change the selection to AUTO—this automatically stops the generator. When the generator has been manually started and the AUTO setting is selected, the AGS status displays as “Start VDC” and uses the autostop setting under the SETUP button’s 04A Gen Run DC Volts menu (even if not active) or the 04F Max Gen Run Time menu, whichever occurs first. This manual-on, auto-off feature is useful if you need to ensure the generator starts before you leave.

- **AUTO**: This selection enables the AGS to automatically start/stop the generator once an active autostart condition is satisfied. Refer to the SETUP: 04 AGS Setup menus in Section 7.1 to set the start and stop parameters for the generator.
Using an AGS Module: Operation

7.2.2 Enabling the ME-AGS-N

Before the AGS can begin operating/monitoring for an autostart condition (using active AGS autostart/autostop settings in your ME-RTR), it must be enabled. To enable the AGS:

1. Press the router’s CTRL button, and then rotate the SELECT knob to the 03 Gen Control menu.
2. Press the SELECT knob. The Set Gen Control screen displays with the current gen control setting and an arrow to the right.
3. Turn the SELECT knob to the AUTO setting, and then press the SELECT knob again to select this setting. The selection arrow appears to the right of the screen.

After enabling the AGS, go to the METER: 04A AGS Status menu. If the AGS’s status is Gen Ready (Redy), then the AGS is ready to automatically start/stop the generator once an autostart condition is satisfied. If the AGS’s status is not Gen Ready, then refer to Section 7.3.2 “Resolving AGS Faults using your Router” before continuing.

Note: If power is lost to your router, the AGS control setting will return to the default OFF setting. Once power is restored, you must enable the AGS again.

Info: Several autostart/autostop settings can be active at once. However, once an autostart condition becomes active, all other autostart conditions are ignored until the specific condition that caused the generator to start (e.g., Start Gen AC Amps) is satisfied by its autostop condition (e.g., Stop Gen AC Amps). Once the generator has completed this autostart/autostop cycle, the AGS immediately begins to monitor for any active autostart/autostop settings again.

7.2.3 Monitoring the AGS using the ME-RTR

The ME-RTR router has additional METER button menus that are helpful for the proper operation and monitoring of your AGS system.

7.2.3.1 ME-RTR Router’s AGS METER Button

Press the router’s METER button and rotate the SELECT knob to view the following read-only menus.

Info: If multiple AGS devices are connected, the System Home screen displays the information from the AGS that is connected to the LOWEST numbered port. For example, if an AGS is connected to the network port on an inverter that is connected to Port 2 (P2Acc), and another AGS is connected to Port 3 on the router (P3), the System Home screen will show the information from the AGS connected to P2Acc.

METER: 04A AGS Status Menu

This read-only menu displays the AGS’s current status. These status messages (listed below) identify what state the AGS is currently in—only one displays at a time (refer also to Figure 7-2).

Note: For specific information on each operational and start status message, refer to Tables 7-3 & 7-4. For any fault mode displayed in the status menu, refer to Table 7-5.

Info: This menu is important when determining if the AGS is working correctly, or for troubleshooting an AGS installation. For any fault mode displayed in the status menu, refer to Section 7.3.2 in this manual.

Operational/Start Status:

- AC In
- Gen Cooldown
- Gen Off
- Gen Ready
- Gen Warmup
- Manual Run
- No AGS Comm
- Quiet Time
- Start Amp
- Start Exercise
- Start SOC
- Start Temp
- Start Test
- Start Time Daily
- Start Topoff
- Start VDC
- Start 100% SOC

Fault Status:

- Fault Amp
- Fault Exercise
- Fault Gen Run
- Fault SOC
- Fault Test
- Fault Temp
- Fault Time Daily
- Fault Topoff
- Fault VDC
- Fault VDC
- Fault 100% SOC
- Unknown ?##?
Using an AGS Module: Operation

METER: 04B DC Volts to AGS

This read-only menu displays the DC voltage measured at Terminal #3 and Terminal #4 of the AGS module. This menu is useful in setting up the voltage start for the AGS, and for troubleshooting its operation.

Info: The DC voltage reading in the **04B DC Volts to AGS** (DC voltage to AGS) menu may vary from the DC voltage readings in the METER button’s **01A DC Volts to Inv** (DC voltage to inverter) and **05B DC Volts – BMK** (DC voltage to BMK) menus. For verification and testing purposes, read the appropriate related meter for each device.

METER: 04C Gen Run Time Menu

This read-only menu displays the length of time the generator has been running since it was autostarted by the AGS. This is useful when trying to determine how long the generator has been running since it was autostarted—in case you were not present when it started. This menu is enabled when the **CTRL: 03 Gen Control** menu is set to **AUTO**, but does not display run time when the generator has been manually started. This meter is not designed to replace an hour meter—refer to the **METER: 04G Gen Hour Meter** menu.

Info: The Gen Run Time menu’s timer is started when the gen run sense voltage/signal is correct and qualified at the AGS module. It is not considered qualified until after a full start attempt and the **04I Gen Warm-up Time** setting is satisfied. Cooldown and warm-up times are not included in the gen run time display. *Total generator run time = Gen Run Time + Gen Warm-up Time + Gen Cooldown Time.*

Info: The times in this display are shown in tenths of an hour (e.g., 0.0 hrs., 0.1 hrs., etc.,)—thus, 0.1 hrs. = 6 minutes.

Info: Depending on the ME-AGS-N version, the Gen Run Time display resets to 0.0 differently. The ME-AGS-N (Ver 5.2): Resets to 0.0 when the generator autostart has finished. The ME-AGS-N (≥Ver 5.3): Resets to 0.0 when another generator autostart is triggered.

Info: This display is used by the **SETUP: 04F Max Gen Run Time** menu to determine the generator’s maximum run time when started automatically.

METER: 04D AGS Temp Menu

When the AGS remote temp sensor (included with AGS, but use is optional) is connected to the AGS’s REMOTE (purple) port, this read-only menu displays the temperature of the temp sensor. If the temperature around the sensor is a very high (>104F), the display will show “TS Hot”, and if very cold (<33F), the display will show “TS Cold”. If the temperature sensor is not installed, the display will show "TS Open".

Info: The temperature in the **METER: 04D AGS Temp** menu can be displayed in either Fahrenheit (default) or Celsius depending on the **SETUP: 01D Temp Display** setting.

If an optional ME-PT1 (or ME-PT2) pigtail adapter is connected to the AGS’s REMOTE (purple) port, and the Set Gen Run Temp (Start Temp) setting is set to **ExtInput** (under the **SETUP: 04E Gen Run Temp** menu), this display will show “Ext ON” when the ME-PT1 has +12 present on its input (or the ME-PT2 is closed); and, will show “Ext OFF” when the ME-PT1 does not have +12 on its input (or the ME-PT2 is open).
Using an AGS Module: Operation

METER: 04E Since Run Days Menu
This read-only menu displays the number of days since the generator has last run. The Since Run Days timer begins once the **CTRL: 03 Gen Control** menu is set to **AUTO**, and then counts by one day for every 24-hour period that the generator does not start. The Since Run Days timer resets any time the gen run sense signal is present on Terminal 2 of the AGS, which could be either by autostarting the generator (including from a previous exercise run), or manually starting the generator (using the ME-RTR).

- **Info:** When the DIP switch inside the AGS is set to “2-Wire Standby Mode”, which does not require the gen run sense signal to be present on Terminal 2 of the AGS, the Since Run Days timer will not be reset to zero.
- **Info:** If a MSH4024RE (dual AC input inverter) is used, the Since Run Days timer also resets any time voltage is present on the AC2 (Gen) input.

METER: 04F Since 100% Days Menu
This read-only menu displays the number of days since the battery was at 100% SOC, and is calculated in the ME-AGS-N. It is used by the SETUP button’s 04J Gen 100% SOC Start feature to determine when to command the ME-AGS-N to autostart the generator.

- **Info:** This display resets once the battery SOC reaches 100%, power to the AGS is lost, or the data communications from the BMK is lost.
- **Info:** The **METER: 04F Since 100% Days** menu uses information from the **METER: 05A BMK SOC** menu to determine the last time the battery SOC was 100%.
- **Info:** For the **METER: 04F Since 100% Days** to increment, the **METER: 05A BMK SOC** display must not display 100% (or **No Comm**), the optional ME-AGS-N must be connected and enabled (**CTRL: 03 Gen Control = AUTO**) and the **SETUP: 04J Gen 100% SOC** must also be enabled (not set to **OFF**).
- **Info:** The **METER: 04F Since 100% Days** menu, which is calculated in the ME-AGS-N, is similar to the **METER: 051 Days Since 100%** menu (which is calculated in the router). If an AGS is installed at a later date (or the router is reconnected), the two menus will not be coordinated with each other. However, they will automatically synchronize once the BMK’s **METER: 05A BMK SOC** menu reaches 100% SOC, or they can be manually synchronized by momentarily removing the network cable from the BMK.

METER: 04G Gen Hour Meter Menu
This menu displays how many hours the generator has run since this “hour meter” was last reset. This menu is helpful if you would like to keep track of how long the generator has run from a specific point; for example, after the generator has been serviced.

- **Note:** The **Gen Hour Meter menu’s timer starts when the gen run sense voltage (10-40 volts DC) from the generator to Pin 2 (+) and Pin 4 (-) is present on the AGS module.**

- **Info:** The **Gen Hour Meter** menu’s timer can register elapsed time up to 65,000 hours, and can be reset to “0 Hours” by pressing and holding the SELECT button for ~3 secs.
- **Info:** The hour meter will not count if the Gen Type DIP switch inside the AGS module is set to “2-Wire-Standby” because this setting does not require the gen run sense voltage from the generator to the AGS.
- **Info:** The **CTRL: 03 Gen Control** setting has no effect on the whether the hour meter is active or not.
- **Info:** The gen hours shown in this menu are calculated in the AGS. They do not reset if the inverter or router loses power, but they do reset if the AGS module loses power.
7.2.4 Starting and Stopping the Generator

The generator can be manually started/stopped, as well as autostarted/autostopped using the available settings from your ME-RTR.

To autostart/autostop the generator:

In order for the generator to autostart/autostop, one or more of the following autostart/autostop conditions must be pre-set (see Section 7.1):

<table>
<thead>
<tr>
<th>Autostart Conditions</th>
<th>Autostop Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>04A Gen Run DC Volts (pp. 79-81)</td>
<td>04A Gen Run DC Volts (pp. 79-81)</td>
</tr>
<tr>
<td>04B Gen Run Time (p. 81)</td>
<td>04B Gen Run Time (p. 81)</td>
</tr>
<tr>
<td>04C Gen Run AC Amps (pp. 81-82)</td>
<td>04C Gen Run AC Amps (pp. 81-82)</td>
</tr>
<tr>
<td>04D Gen Run SOC (pp. 82-83)</td>
<td>04D Gen Run SOC (pp. 82-83)</td>
</tr>
<tr>
<td>04E Gen Run Temp (pp. 83-84)</td>
<td>04E Gen Run Temp (pp. 83-84)</td>
</tr>
<tr>
<td>04H Gen Exercise (pp. 87-88)</td>
<td>04F Max Gen Run Time (p. 85)</td>
</tr>
<tr>
<td>04J Gen 100% SOC (pp. 89-90)</td>
<td>04G Gen Quiet Time (pp. 85-86)</td>
</tr>
<tr>
<td></td>
<td>04H Gen Exercise (pp. 87-88)</td>
</tr>
</tbody>
</table>

To manually start the generator:

From the AGS Home screen (to access, refer to Section 7.1.1.1):

1. Press the CTRL button.
2. Turn the SELECT knob to the 03 Gen Control menu.
3. Press the SELECT knob. The Set Gen Control menu displays with an arrow to the right of the current setting.
4. Turn and press the SELECT knob to select the **ON** setting. The selection arrow appears to the right of the screen. The generator should start at this time.

If the generator does not start as expected, refer to Section 7.3.

To manually stop the generator:

From the AGS Home screen (to access, refer to Section 7.1.1.1):

1. Press the CTRL button.
2. Turn the SELECT knob to the 03 Gen Control menu.
3. Press the SELECT knob. The Set Gen Control menu displays with an arrow to the right of the current setting.
4. Turn and press the SELECT knob to select the **OFF** setting. The selection arrow appears to the right of the screen. The generator should stop at this time.

If the generator does not stop as expected, refer to Section 7.3.

To manually start the generator and have it automatically stop:

From the AGS Home screen (to access, refer to Section 7.1.1.1):

1. Press the CTRL button.
2. Turn the SELECT knob to the 03 Gen Control menu.
3. Press the SELECT knob. The Set Gen Control menu displays with an arrow to the right of the current setting.
4. Turn and press the SELECT knob to select the **ON** setting. The selection arrow appears to the right of the screen. The generator should start at this time.

After the generator is running, rotate the SELECT knob to **AUTO** (under the CTRL: 03 Gen Control menu), and then press the SELECT knob to select the **AUTO** setting.

Note: When the generator is manually started, and then changed to autostop, the SETUP: 04A Gen Run DC Volts stop settings are used to determine when the generator will autostop. If the SETUP: 04A Gen Run VDC is set to **OFF**, the Start/Stop Delay and Stop Volts values that were entered prior to selecting OFF will still be used to autostop the generator.

If the generator does not start or stop as expected, refer to Section 7.3.
Using an AGS Module: Operation

7.2.5 ME-RTR Router’s AGS Menu Maps

This section provides the AGS menu maps available from your router. Refer to Appendix A in the back of this manual for a glossary of abbreviations that may appear on the router’s LCD display.

Note: The router enables you to access AGS METER button info from two sources: 1) View AGS meter info from the specific port to which the AGS is connected (via the AGS Home screen), 2) You can also access meter information for all ports (via the System Home screen).

Note: When applicable, battery voltage defaults and ranges are shown for a 24-volt battery (12-volt systems divide by 2; 48-volt systems multiply by 2).

Figure 7-2, AGS PORT, CONTROL, METER, and TECH Menu Maps
Note: The AGS-N SETUP menus are accessed via the System Home screen and PORT button; or, by pressing the SETUP button and rotating to the 04 AGS Setup menu, and then pressing the SELECT knob. Refer to the procedures below to access these menu items via the AGS Home screen.

Figure 7-3, AGS SETUP Menu Maps (Section 1)
Using an AGS Module: Operation

Figure 7-4, AGS SETUP Menu Maps (Section 2)
7.2.6 ME-AGS-N Router Status Messages

A status message may be an operational or fault message. Access the AGS status menu (METER: 04A AGS Status menu) to view the AGS’s current operating status. This menu is important when determining if the AGS is working correctly, or for troubleshooting an AGS installation.

7.2.6.1 AGS Router Operational Statuses

See Table 7-3 for AGS operational statuses that may display (depending on your router’s version).

Table 7-3, AGS Router Operational Statuses

<table>
<thead>
<tr>
<th>STATUS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC In</td>
<td>The inverter/charger is connected to another source such as a grid or an alternate generator, and is not controlled by the AGS. When AC In displays, the AGS is prevented or locked out from all autostarting conditions, except for when the gen needs to exercise—if enabled.</td>
</tr>
<tr>
<td>Gen Cooldown</td>
<td>The autostop setting has been satisfied in one of the generator autostart/autostop menus, and the generator has been disconnected from the inverter/charger. However, the generator is still running until the cooldown time is met (as per the SETUP: 04I Gen No-Load Time setting).</td>
</tr>
<tr>
<td>Gen Off</td>
<td>The CTRL: 03 Gen Control menu is set to OFF. This setting will not allow the AGS to autostart the generator.</td>
</tr>
<tr>
<td>Gen Ready</td>
<td>The CTRL: 03 Gen Control menu is set to AUTO, and the AGS is ready to automatically start the generator based on the active autostart settings under the SETUP: 04 AGS Setup menu.</td>
</tr>
<tr>
<td>Gen Warm-up</td>
<td>The AGS is attempting to start the generator and a time period has been set under the SETUP: 04I Gen No-Load Time setting. Once the AGS status displays as "Warm-up", the inverter/charger's AC input ignores any incoming AC power. This prevents the inverter/charger from loading the generator during warm-up. Once the AGS has determined that the generator is running, the warm-up time setting must be met before the generator can connect to the inverter/charger.</td>
</tr>
<tr>
<td>Manual Run</td>
<td>The generator was started manually, either by setting the CTRL: 03 Gen Control menu to "ON", or by using the start/stop switch directly connected to the generator.</td>
</tr>
<tr>
<td>No AGS Comm</td>
<td>The AGS is not communicating with the inverter/router. This is a normal status if there is no AGS-N connected in the system.</td>
</tr>
<tr>
<td>Quiet Time</td>
<td>The AGS has entered Quiet Time per the SETUP: 04G Gen Quiet Time setting.</td>
</tr>
<tr>
<td>Unknown ?##?</td>
<td>The generator failed to recognize the status information transmitted by the AGS. This is normally due to an AGS module being a newer version than that of the router.</td>
</tr>
</tbody>
</table>

Note: The AC In status prevents the AGS from autostarting. To enable the AGS to autostart the generator, remove any AC power connected to the input of the inverter/charger.

Note: If an AGS is connected, then ensure: the green READY indicator on the AGS module is on (blinking or solid) to indicate that the AGS module is getting power, the communications cable is connected from the Network port on the Magnum inverter to the NETWORK port on the ME-AGS-N, and that you have the correct communications cable.

Note: The generator will not autostart during Quiet Time.
Using an AGS Module: Operation

7.2.6.2 AGS Router Start Statuses

The following “Start” statuses identify the condition that autostarted the generator. If you determine the autostart condition occurred sooner than expected (or didn’t want this autostart condition), refer to Section 7.1 to change (or defeat) the autostart setting.

<table>
<thead>
<tr>
<th>STATUS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Amp (StrtAmp or SAmp)</td>
<td>The generator has started based on the SETUP: 04C Gen Run AC Amps settings.</td>
</tr>
<tr>
<td>Start Exercise (StrtExe or SExe)</td>
<td>The generator has started based on the SETUP: 04H Gen Exercise settings.</td>
</tr>
<tr>
<td>Start SOC (StrtSOC or SSOC)</td>
<td>The generator has started based on the SETUP: 04D Gen Run SOC setting.</td>
</tr>
<tr>
<td>Start Temp (StrtTemp or STmp)</td>
<td>The generator has started based on the SETUP: 04E Gen Run Temp setting.</td>
</tr>
<tr>
<td>Start Test (StrtTest or STst)</td>
<td>The AGS is in Test mode. Test mode may be started from the TEST button located on the AGS.</td>
</tr>
<tr>
<td>Start Time Daily (StrtTOD or STOD)</td>
<td>The generator has started based on the SETUP: 04B Gen Run Time setting.</td>
</tr>
<tr>
<td>Start Topoff (StrtToff or STop)</td>
<td>The generator has started based on the SETUP: 04G Gen Quiet Time menu’s Topoff time setting.</td>
</tr>
<tr>
<td>Start VDC (StrtVDC or SVDC)</td>
<td>The generator either has started based on the SETUP: 04A Gen Run Volts DC settings, or was manually started and then set to AUTO to autostart.</td>
</tr>
<tr>
<td>Start 100% SOC (Strt100% or S100)</td>
<td>The generator has started based on the SETUP: 04J Gen 100% SOC settings.</td>
</tr>
</tbody>
</table>

7.2.6.3 AGS Router Fault Statuses

The following “Fault” statuses indicate that the generator wasn’t able to start based on an expected autostart condition. Refer to Section 7.3.2 “Resolving AGS Faults using your Router” for help in diagnosing the problem.

<table>
<thead>
<tr>
<th>STATUS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault Amp (Falt Amp or FAmmp)</td>
<td>The generator failed to start in Start Amps mode.</td>
</tr>
<tr>
<td>Fault Exercise (Falt Exe or FExe)</td>
<td>The generator failed to start in Start Exercise mode.</td>
</tr>
<tr>
<td>Fault Gen Run (FaltGnRn or FGnR)</td>
<td>The generator successfully started and ran for more than two minutes, but unexpectedly stopped before the AGS could automatically stop the generator.</td>
</tr>
<tr>
<td>Fault MaxRn (FaltMxRn or FMxR)</td>
<td>The generator has run longer than expected and has met or exceeded the SETUP: 04F Max Gen Run Time setting. This fault can occur when: 1) an autostop condition has been met, but the AGS was not able to stop the generator; or, 2) the autostop setting exceeded the Max Gen Run Time setting.</td>
</tr>
<tr>
<td>Fault SOC (Falt SOC or FSOC)</td>
<td>The generator failed to start in Start SOC mode.</td>
</tr>
</tbody>
</table>
Table 7-5, AGS Router Fault Statuses (Cont.)

<table>
<thead>
<tr>
<th>STATUS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault Temp (FaltTemp or FTmp)</td>
<td>The generator failed to start in Start Temp mode.</td>
</tr>
<tr>
<td>Fault Test (FaltTest or FTst)</td>
<td>The generator failed to start in Test mode.</td>
</tr>
<tr>
<td>Fault Time Daily (Falt TOD or FTOD)</td>
<td>The generator failed to start in Start Time mode.</td>
</tr>
<tr>
<td>Fault Topoff (Falt Top or FTop)</td>
<td>The generator failed to start in Start Topoff mode.</td>
</tr>
<tr>
<td>Fault VDC (Falt VDC or FVDC)</td>
<td>The generator failed to start in Start Volts DC mode.</td>
</tr>
<tr>
<td>Fault 100% SOC (Falt100% or F100)</td>
<td>The generator failed to start in 100% SOC mode.</td>
</tr>
</tbody>
</table>

Table 7-6, AGS Default Settings on ME-RTR

<table>
<thead>
<tr>
<th>04 AGS SETUP MENUS</th>
<th>DEFAULT SETTINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>04A Gen Run Volts DC</td>
<td>Start Volts = 11.5 VDC (12v), 23.0 VDC (24v), 46.0 VDC (48v)</td>
</tr>
<tr>
<td></td>
<td>Start Delay = 120 secs</td>
</tr>
<tr>
<td></td>
<td>Stop Volts = 14.4 VDC (12v), 28.8 VDC (24v), 57.6 VDC (48v)</td>
</tr>
<tr>
<td></td>
<td>Stop Delay = 120 secs</td>
</tr>
<tr>
<td>04B Gen Run Time</td>
<td>OFF</td>
</tr>
<tr>
<td>04C Gen Run AC Amps*</td>
<td>OFF</td>
</tr>
<tr>
<td>04D Gen Run SOC</td>
<td>OFF</td>
</tr>
<tr>
<td>04E Gen Run Temp</td>
<td>OFF</td>
</tr>
<tr>
<td>04F Max Gen Run Time</td>
<td>12.0 Hrs</td>
</tr>
<tr>
<td>04G Gen Quiet Time</td>
<td>OFF</td>
</tr>
<tr>
<td>04H Gen Exercise</td>
<td>OFF</td>
</tr>
<tr>
<td>04I Gen No-Load Time</td>
<td>Warm-up = 60 secs</td>
</tr>
<tr>
<td></td>
<td>Cooldown = 60 secs</td>
</tr>
<tr>
<td>04J Gen 100% SOC</td>
<td>OFF</td>
</tr>
</tbody>
</table>

MS-PAE, MS-PE and MSH Series models only
7.3 ME-AGS-N Router Troubleshooting (with the ME-RTR)

This section assists you in using your router to identify a fault, and to resolve an abnormal operational condition detected within your AGS system.

7.3.1 AGS Fault Message Screens for the Router

When an AGS fault is detected, and the RTR’s FAULT LED comes on, the fault status is displayed on the LCD screen. Figure 7-5 is an example of how fault messages appear on the ME-RTR. Use the RTR’s LCD screen and the information in this section to identify and correct the issue.

The FAULT LED lights solid red if the RTR’s display is on the port/device with the active fault, but flashes red if a different port/device has the active fault. Navigate to the port/device with the active fault—the FAULT LED turns solid red when you are on the correct port/device.

![System Home Screen](image)

![AGS Home Screen](image)

Figure 7-5, ME-AGS-N Fault Message – Router Screens

7.3.2 Resolving AGS Faults using your Router

For the nine faults that follow, refer to the Remedy immediately following the list.

- **Fault Amp** – The generator failed to autostart and run per the 04C Gen Run AC Amps menu’s start parameters.
- **Fault Exercise** – The generator failed to autostart and run per the 04H Gen Exercise menu’s start parameters.
- **Fault Gen Run** – The generator successfully started and ran for over two minutes, but the generator unexpectedly stopped by itself before the active AGS autostop condition was finished.

Info: The AGS module determines the generator is running by monitoring the gen run sense voltage/signal. When this gen run sense voltage/signal is no longer available, the AGS thinks the gen is off or has stopped.

Info: Gen run fault detection is not active if the generator is manually started; or, if the Gen Type switch is set to “2-Wire Standby”—which does not require a gen run sense voltage.

Remedy:

a) **If the generator is still running:** Confirm you are getting the correct gen run sense signal to the AGS module.

b) **If the generator is not running:** Check the generator for fault codes and adequate fuel. If neither is an issue, check the generator’s owner’s manual for troubleshooting tips to determine why it may have shut down on its own.
Using an AGS Module: Troubleshooting

- **Fault MaxRn** – The generator has run longer than expected and has met or exceeded the **SETUP: 04F Max Gen Run Time** setting. The AGS will attempt to turn the generator off—after autostarting—when this fault occurs.

 Info: The **Max Gen Run Time** menu uses the **SETUP: 04B Gen Run Time** settings to determine the generator’s run time. Cooldown and warm-up times are not included in the **Gen Run Time** display.

 Remedy: Confirm that all the autostop parameters that are active or enabled can be satisfied before the **SETUP: 04F Max Gen Run Time** setting is reached.

 - If using the **SETUP: 04A Gen Run Volts DC** menu’s parameters:
 - with a battery voltage setting to autostop, ensure the autostop voltage is less than the temperature-compensated absorb charge voltage.
 - with the “**Float**” setting to autostop, ensure the time that the charger is in the Bulk Charge and Absorb Charge¹ stages is shorter than the **04F Max Gen Run Time** setting.

 Refer to the **SETUP: 04A Gen Run DC Volts** section (page 79) for additional information on this setting.

 Note¹: Several conditions determine the length of time that the charger is in the Absorb Charge stage. Ensure the **SETUP: 03D Absorb Done (Time, Amps, or SOC)** setting—determines when the Absorb Charge stage is complete and enters the Float stage—is taken into account when setting the **04F Max Gen Run Time** setting.

 - If using **SETUP: 04B Gen Run Time**, confirm you have not set the total run time (start time to the stop time) longer than the **SETUP: 04F Max Gen Run Time** setting.
 - If using **SETUP: 04C Gen Run AC Amps**, confirm the inverter load(s) that is used to determine the **Stop AC Amps** setting is not required to run longer than the **SETUP: 04F Max Gen Run Time** setting.
 - If using **SETUP: 04D Gen Run SOC**, confirm that the **METER: 05A BMK SOC** reading is not “**Think’n**”, but shows an actual percentage reading on the display (e.g., 85%), and the **Stop SOC** setting can be satisfied before the **SETUP: 04F Max Gen Run Time** setting is reached.
 - If using **SETUP: 04E Gen Run Temp**, the temperature around the remote temperature sensor has not reached the **Gen Run Temp** setting. You need to either lower the **Start Temp** setting, determine how to cool the area (remote temp sensor location) to below the **Start Temp** setting before the **04F Max Gen Run Time** setting is reached, or increase the **Max Gen Run Time** setting.

 - Lastly, confirm that your warm-up and/or cooldown time when added to your autostop condition does not exceed the **SETUP: 04F Max Gen Run Time** setting.

 Info: Beginning with Version 5.2 of the ME-AGS-N, the **Max Gen Run Time** setting can be defeated. In some cases, it may be appropriate to set the **Max Gen Run Time** setting to **OFF**. However, this feature is mainly provided as a safety feature to ensure the generator doesn’t run longer than the time it takes to reach the autostop conditions or to expend the generator’s fuel capacity, whichever occurs first—take this into consideration if this setting is defeated.

- **Fault SOC** – The generator failed to autostart and run per the **04D Gen Run SOC** menu’s start parameters.

- **Fault Temp** – The generator failed to autostart and run per the **04E Gen Run Temp** menu’s start parameters.

- **Fault Test** – The generator failed to autostart and run after the red **TEST** button is pressed on the AGS module.

 Note: The **ME-RTR** does not provide a “test” selection, instead it can be set to manually turn the generator on and off, which can be used to test the generator wiring to the AGS.

- **Fault Time Daily** – The generator failed to autostart and run per the **04B Gen Run Time** menu’s start parameters.
Using an AGS Module: Troubleshooting

- **Fault Topoff** – The generator failed to autostart and run per the 04G Gen Quiet Time menu’s Topoff start parameters.
- **Fault VDC** – The generator failed to autostart and run per the 04A Gen Run Volts DC menu’s start parameters.
- **Fault 100% SOC** – The generator failed to autostart and run per the 04J Gen 100% SOC menu’s start parameters.

 Remedy: One of the above fault messages may display on the router when:

 a) The AGS attempts to start the generator four times, but the generator failed to start and run per the specific autostart parameters; or,

 b) The generator started, but did not provide the correct gen run sense signal to the AGS module. For either scenario, refer to your AGS owner’s manual to troubleshoot why the generator does not start or run.

7.3.2.1 How to Clear AGS Faults

To clear the AGS fault, go to the CTRL: 03 Gen Control menu and select OFF. Once the fault is cleared, you should test the AGS/generator system by performing the AGS Functional Test—to see if the fault returns.

Note: After troubleshooting the reason for the AGS fault, and then clearing the fault, be sure to re-enable the AGS to autostart. Go to the CTRL: 03 Gen Control menu and select AUTO. Refer to Figure 7-2.
8.1 ME-BMK Setup (with the ME-RTR)

The BMK SETUP menus can be accessed from the BMK Home screen or the System Home screen (see Figure 8-4). Two settings are available in the BMK, the first sets the battery efficiency (05A Charge Efficiency) and the second sets the capacity of the battery bank (05B Battery AmpHrs Size).

Info: To access the BMK Home screen, first press and hold the METER button (~3 seconds) to display the System Home screen. From the System Home screen, press the PORT button, or rotate the SELECT knob to the port# where the BMK is connected.

- **SETUP: 05A Charge Efficiency** – The Charge Efficiency setting allows the battery monitor to calculate the battery’s charge efficiency. The charge efficiency can be calculated automatically using the Auto setting, or can be calculated based on a fixed efficiency value determined by the user (see Figure 8-1).

 Default setting: Auto
 Range: Auto, 50-99%

8.1.1 Adjusting the Charge Efficiency Setting

The battery monitor is shipped with the charge efficiency set to Auto. This allows the battery monitor to automatically calculate variables that affect the charging efficiency such as battery type, battery age, and how the batteries are maintained—which is not always constant. With the Auto setting, the efficiency is recalculated each time the batteries reach a 100% state of charge.

This setting can also be manually adjusted from 50% to 99% if the battery’s charge efficiency is known. When using a setting other than the Auto setting, the battery monitor uses the manual setting to calculate the AH I/O display. For example, if you set the charge efficiency to 90% and 100 AHrs are removed from the battery, the AH Net display would read 000 only after 111 AHrs have been returned to the battery. However, if the charge efficiency is manually set and inaccurate, the SOC information will be more inaccurate with every charge. Thus, continually monitor the AH I/O reading (along with the SOC display) under the router's METER button.

To access the AH I/O reading: From the BMK Home screen, press the METER button. The 05A BMK SOC display appears. Turn the SELECT knob until the 05D Amps Hours In/Out menu appears. After several charge and discharge cycles (below 80% SOC), the AH I/O reading should be slightly positive when the SOC display reads 99%.

To view the SOC display: From the BMK Home screen, press the METER button. The 05A BMK SOC menu appears. If the AH I/O reading is below 000 (negative number) when the SOC display reads 99%, then increase the charge efficiency setting. If you find that the AH I/O reading is substantially above zero when the SOC display reads 99%, then decrease the charge efficiency setting.
CAUTION: The factory default charge efficiency setting is *Auto*, which allows the charging efficiency to be automatically calculated. In most circumstances, this setting determines the best charge efficiency. If you do not know your battery’s charging efficiency, leave it at the factory default setting. If the setting is manually set but incorrect, the state-of-charge information will become more inaccurate with every charge.

What is Charge Efficiency? When a certain amount of energy is removed or discharged from the battery, this removed energy will need to be returned to keep the batteries at a 100% state of charge. As batteries are being charged, they lose energy; either in the form of heat, or while gassing. This loss of energy while charging means the battery will not be fully charged if you only return the current that was removed. To compensate for the battery’s inefficiencies while charging, a charge efficiency setting is provided. The charge efficiency setting compensates the AH I/O (AHrs In/Out) reading by ensuring the AHrs returned to the battery are greater than the AHrs removed.

Example: AH I/O display reads “000”’. When powering a 25-amp load for two hours, the display will show “-050”. You have discharged 50 AHrs (2 x 25) from the battery. If the charge efficiency setting is 95%, then as you begin charging and return 50 AHrs, the AH I/O reading will be less than zero—indicating that the AHrs removed have not been fully returned. The 95% charge efficiency setting requires 52.5 AHrs (50/95) to be returned before the AH I/O returns to 0.

- **SETUP: 05B Battery AmpHrs Size** – The Battery AmpHrs (Amp-Hours) Size represents the amount of energy the battery can deliver. This setting is used by the battery monitor to help calculate the battery’s SOC (State of Charge).

 Default setting: 400 AmpHrs
 Range: 200-2500 AmpHrs

 Note: It’s important that the Battery AmpHrs Size setting is correct or else the calculations used to determine the battery’s SOC display will be inaccurate.

 Adjusting the AmpHrs Setting – From the BMK home screen (see Info in Section 8.1), press the SETUP button. Turn the SELECT knob until the 05B Battery AmpHrs Size display appears. Press the SELECT knob to access the Set Battery AmpHrs Size function. Turn the SELECT knob to adjust the amp-hours setting, press the SELECT knob to save the new setting (see Figure 8-2).

 Where do I set the Absorb Time setting? Select the setting based on the 20-hour AH capacity of your battery bank. Refer to the battery manufacturer for the 20-hour AH capacity.

 How do I determine my Battery Amp-Hour capacity? The batteries should be deep-cycle type and rated either by AHrs or reserve capacity in minutes.

 - Amp-hour (AH) capacity is a measurement of how many amps a battery can deliver for a specified length of time (usually 20 hours) until the voltage achieves 1.75 VDC/cell at 80° F.
 - Reserve Capacity (RC) is a measure of how many minutes a battery can deliver a certain amount of current (usually 25A) and maintain a voltage above 1.75 VDC/cell at 80° F. If using the Reserve Capacity (25A), the 20-hour AH capacity can be estimated by multiplying ‘minutes reserve capacity’ by 50%.

 Note: For batteries in parallel strings, add the amp-hour capacity of each string (Example: three 250AH batteries in parallel = 750 AH); for batteries in series, use the amp-hour capacity of one battery (Example: three 250 AH batteries in series = 250 AH).

 ![Figure 8-2, Accessing the Battery AmpHrs Size Setting](image)
8.2 ME-BMK Operation/Monitoring (with the ME-RTR)

This section explains how the ME-BMK (Battery Monitor kit) battery monitor works, and how to use the ME-RTR to obtain battery bank information. It also covers the various LCD displays that are related to the battery monitor and the status of the sense module’s LED indicator.

Info: Battery monitor menu items are accessed via the RTR router’s BMK Home screen. For information on how to access the BMK Home screen refer to the Info in Section 8.1.

8.2.1 How does the ME-BMK Battery Monitor Operate?

The ME-BMK uses a precision resistor known as a shunt to measure current flow into and out of the battery. The shunt provides a small voltage to the BMK sense module that is proportional to the current flow. When the battery current starts flowing, the sense module measures the amount of current removed from and returned to the battery. The amount of current (or AHrs) removed or returned is displayed as the *METER: 05D Amp Hours In/Out* value. This Amp Hours In/Out number is compensated by the *SETUP: 05A Charging Efficiency* value that accounts for energy loses while charging, and is one of the factors used to determine the battery’s State Of Charge (SOC).

The battery's state of charge—which is the best indicator of the condition of the batteries—is indicated on the *METER: 05A BMK SOC* display. This display shows that the batteries are fully charged (i.e., SOC = 100%) once the following three conditions have been met:

1. The charging voltage has stabilized over a period of time (see Figure 8-3).
2. The charging current has decreased to a low % of the AHr capacity—normally less than 2%.
3. The AHrs that were removed from the battery are within 1% of fully being returned.

When the BMK sense module is first connected, the batteries will need to be fully charged (i.e., SOC = 100%) at least once to establish a SOC reference point. While this reference point is being calculated, the *METER: 05A BMK SOC* display shows “Think’n” to indicate that the SOC reference point is calculated. After the batteries are fully charged, the display changes from “Think’n” to “100%” and begins to provide accurate SOC percentage values. After the batteries have reached 100% SOC and have discharged ≥ 0.5% of the battery capacity setting, the charge efficiency value is recalculated and the *Amp Hours In/Out* read-out resets to the recalculated value.

Info: To help maintain the accuracy of the *METER: 05A BMK SOC* display and keep the batteries in good condition, they must be charged to 100% occasionally (~ once a week).

![Figure 8-3, Ending Battery Voltage Versus Time](image)
Using a BMK: Operation/Monitoring

8.2.2 BMK METER Menu Items (with ME-RTR)

From the BMK Home screen, press the METER button, and then turn the SELECT knob on the ME-RTR router to access the different meters that determine the status of the battery system.

Info: If multiple BMKs are connected, the System Home screen displays information from the BMK connected to the LOWEST numbered port. For example, if a BMK is connected to the network port on an inverter which is connected to Port 1 (P1Acc), and another BMK is connected to Port 5 on the router (P5), the System Home screen will show the information from the BMK connected to P1Acc.

METER: 05A BMK SOC

This read only menu either displays the calculated battery SOC (State of Charge) for the connected battery bank, “Think’n” (to indicate the SOC is being calculated), or identifies a fault condition.

Note: Refer to Section 8.2.4 for information on BMK statuses/faults.

The range is 0% to 100%, where 100% is a fully charged battery and at 0% the battery is completely discharged. When the BMK sense module is first connected, the display will show “Think’n”, to indicate that the SOC reference point is being calculated. After the batteries are fully charged, the display will change from “Think’n” to “100%” and begin to provide accurate SOC percentage values.

Note: If the sense module is disconnected from power, this display resets to “Think’n” and the batteries require another full charge before this display begins providing SOC percentage information.

METER: 05B DC Volts-BMK

This meter displays the DC volts at the BMK input. The range is from 07.00 to 70.00 volts (± 0.02).

METER: 05C DC Amps-BMK

This meter displays the real-time charge current (amps into battery) or discharge current (amps out of battery) as measured through the BMK shunt. Charging is shown as a positive (+) number and discharging is shown as a negative (–) number. The range is from ±0.1 to 999 amps (±1.0%).

METER: 05D Amp Hours In/Out

This meter displays the AHrs returned to or removed from the battery. When this value is positive, it represents AHrs returned to the battery during any subsequent charging. A negative value represents AHrs removed from a full battery. The range is ±32,768 AHrs. When using the charge efficiency’s Auto setting, the AH I/O value is recalculated after the battery has been fully charged (100% SOC) and >0.5% of the battery capacity has been discharged. If the sense module is disconnected from power, the displayed AH I/O value resets to zero.

Info: The Amp Hours In/Out display correlates with the SETUP: 05B AmpHrs Size setting to determine the 05A BMK SOC display. **Example:** running a 10-amp load for three hours, the display shows “~30 AH”. When you begin charging, the display will count from – 30 AHrs back toward 0 AHrs.

METER: 05E Resettable AHrs

This meter displays the total AHrs removed from the battery since the sense module was first connected or since last reset. This display can be used as a battery load indicator to help identify and monitor the battery load consumption. The range is 0 to 65,535.0 AHrs (0.1 amp-hour resolution). To reset the AHrs value to 0.0, either disconnect the sense module from power, or press and hold the rotary SELECT knob for ~2 seconds when this display is shown. After this display has been reset, it will begin calculating and displaying new rAH out values.

METER: 05F Total kAHrs Out

This meter displays the total AHrs removed from the battery since the sense module was first connected or since it was last reset. This display can be used as a battery service life indicator. The value is displayed in 0.1k [or 100 AHrs (“k” equals 1000)] resolution up to a maximum of 6,553.5k AHrs (6,553,500 AHrs).

To reset the kAHrs value to 0.0, either disconnect the sense module from power, or press and hold the rotary SELECT knob for ~2 seconds when this display is shown. After this display has been reset, it will begin calculating and displaying new kAHrs out values.
METER: 05G Minimum VDC
This menu displays the lowest battery voltage since the last reset. The voltage shown on the display is averaged each second, and is helpful when troubleshooting or detecting an over-discharge condition. To reset this display, press and hold the rotary SELECT knob for ~2 seconds while the Minimum VDC display is shown. If the battery monitor is not connected or not communicating, the display shows "0.0".

METER: 05H Maximum VDC
This menu displays the highest battery voltage since the last reset. The voltage shown is averaged each second, and this allows you to check your charging system (e.g., battery charger, charge controller, etc.,) to ensure the charging voltage has been attained. This is also helpful when troubleshooting or detecting if an overcharge condition has occurred. To reset this display, press and hold the rotary SELECT knob for ~2 seconds while the Maximum VDC display is shown. If the battery monitor is not connected or not communicating, the display shows "0.0".

METER: 05I Days Since 100%
This read-only menu displays the number of days since the battery was at 100% SOC, and is calculated in the router.

Info: This display resets either once the battery SOC reaches 100%, power to the router is lost, or the data communications from the BMK is lost.

Info: The METER: 05I Days Since 100% menu uses information from the METER:05A BMK SOC menu to determine the last time the battery SOC was at 100%.

Info: For the METER: 05I Days Since 100% to increment, the optional battery monitor (ME-BMK or ME-BMK-NS) must be connected and the METER: 05A BMK SOC meter must not display 100% [must display a valid SOC value – Think’n, No Comm, or any BMK fault (i.e., Factory Fault, Power-up Fault, or Unknown Fault ##) are not valid SOC values].

Info: The METER: 05I Days Since 100% menu is similar to the 04F Since 100% Days menu (calculated in AGS). If an AGS is installed at a later date (or router is reconnected), the two menus are not coordinated with each other. However, they will be automatically synchronized once the BMK’s METER: 05A BMK SOC menu reaches 100% SOC (or you can manually synchronize by momentarily removing the network cable from the BMK).

8.2.3 ME-RTR Router’s BMK Menu Maps
Figures 8-4, 8-5 & 8-6 are a complete overview of the battery monitor settings and information displays available from the ME-RTR router’s SETUP and METER menus. Refer to Appendix A in the back of this manual for a glossary of abbreviations that may appear on the router’s LCD display.
Using a BMK: Operation/Monitoring

ALL Ports METER Displays:

- **03 Timers**
 - Port Display Type
 - Rotate SELECT Knob
- **04 AGS Meters**
 - Default/Current Setting
 - Rotate SELECT Knob
- **05 BMK Meters**
 - Rotate SELECT Knob

METER

LEGEND

- Rotate SELECT Knob
- Set Charge Efficiency = Auto
- Set Charge Efficiency = Auto
- Rotate SELECT Knob

Figure 8-5, BMK METER Menu Maps (ALL Ports)

From System Home Screen:

- **Press PORT** until
- **Press Battery Monitor**
 - SOC: 100%
 - 27.23 VDC - 101.4 ADC
 - P4 BMK Home

Figure 8-6, BMK METER Menu Map (Port-specific)
8.2.4 BMK Status Messages (with the ME-RTR)

A status message may be an operational or fault message. Access the BMK Home screen (see Section 8.1 to access) to view the BMK’s current operating status. The status is important when determining if the BMK is working correctly, or for troubleshooting a BMK installation.

8.2.4.1 BMK Router Operational Statuses

Refer to Table 8-1 below for a brief description of the BMK operational statuses that may display on your router.

Table 8-1, BMK Router Operational Statuses

<table>
<thead>
<tr>
<th>STATUS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>No BMK Present</td>
<td>The BMK is not communicating with the inverter/router. This is a normal status if there is no BMK connected in the system.</td>
</tr>
<tr>
<td></td>
<td>If a BMK is installed, view the BMK sense module’s LED.</td>
</tr>
<tr>
<td></td>
<td>a) If the LED is green, disconnect the terminal block for 5 seconds, and then reconnect it to ensure the terminal block is correctly seated into the sense module.</td>
</tr>
<tr>
<td></td>
<td>b) If the LED is blinking red, there is no communication or there is an unrecognizable communication on the network. Check the communication cable—ensure it is connected correctly. If the ME-BMK communication cable is missing, a standard 2-conductor telephone cable may be temporarily substituted.</td>
</tr>
<tr>
<td>Think’n (Thnk)</td>
<td>When the BMK Sense Module is first connected, the batteries need to be fully charged (i.e., SOC = 100%) to establish a SOC reference point.</td>
</tr>
<tr>
<td></td>
<td>The BMK Sense Module is disconnected from power and the batteries require a full charge before the router display begins providing SOC percentage information.</td>
</tr>
<tr>
<td>##% (SOC:##%)</td>
<td>The batteries are fully charged, the display has changed from “Think’n” to “100%” and is ready to provide accurate SOC percentage values.</td>
</tr>
</tbody>
</table>

8.2.4.2 BMK Router Fault Statuses

The following “Fault” statuses indicate that the battery monitor is not working correctly. Refer to Section 8.3.2 “Resolving BMK Faults using the Router” for help in diagnosing the problem.

Table 8-2, BMK Router Fault Statuses

<table>
<thead>
<tr>
<th>STATUS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factory Fault</td>
<td>The BMK has lost its factory-set internal calibration reference.</td>
</tr>
<tr>
<td>(FacFault or FacF)</td>
<td></td>
</tr>
<tr>
<td>Power-up Fault</td>
<td>A fault occurred during the BMK’s power-up sequence.</td>
</tr>
<tr>
<td>(PwrFault or PwrF)</td>
<td></td>
</tr>
<tr>
<td>Unknown Fault ##</td>
<td>A fault code that is not recognized by the router.</td>
</tr>
<tr>
<td>(Fault## or F ##)</td>
<td></td>
</tr>
</tbody>
</table>
Using a BMK: Troubleshooting

8.3 ME-BMK Troubleshooting (with the ME-RTR)

This section assists you in using the router to identify and resolve any faults or abnormal operational conditions within your BMK system.

8.3.1 BMK Fault Message Screens for a Magnum Router

When an BMK fault is detected, the RTR’s FAULT LED (red) comes on and the fault status is displayed on the LCD screen. Figure 8-7 is an example of how fault messages appear on the ME-RTR. Use the RTR’s LCD screen and the information in this section to identify and correct the issue.

The FAULT LED lights solid red if the RTR’s display is on the port/device with the active fault, but blinks if a different port/device has the active fault. Navigate to the port/device with the active fault—the FAULT LED turns solid red when you are on the correct port/device.

8.3.2 Resolving BMK Faults using the Router

For the three BMK faults that follow, refer to its respective remedy.

- **Factory Fault (FacFault)** – The BMK has lost its factory-set internal calibration reference.

 Remedy: Reset the BMK by removing all power from the BMK. After resetting the BMK, if the Factory Fault remains or returns, the BMK will require repair at the Magnum Energy factory service facility.

- **Power-up Fault (PwrFault)** – The BMK’s power-up sequence failed.

 Remedy:
 1) Ensure the current sense wires are connected into pins 1 (blue wire) and 2 (orange wire), and the voltage wires are connected to pins 3 (black/negative) and 4 (red/positive).
 2) Unplug the 4-port terminal block from the Sense Module, and then check for the correct DC voltage on pins 3 (−) and 4 (+). The voltage must be between 7 to 70 volts DC depending on the nominal voltage of the inverter.

- **Unknown Fault ## (Fault##)** – This fault message displays when the inverter/charger has sent a fault code that is not recognized by the router.

 Remedy: Call the Technical Support department at Magnum Energy (425-353-8833) for assistance in determining and understanding the actual fault status.
9.0 Attaching a Remote Control

A remote control (ME-ARC or ME-RC) can be connected to the router and used in a different location to assist with monitoring your system. Only one remote control can be used, and it must be connected directly to one of the router ports and programmed (per SETUP: 06 RC Setup menu) to indicate which port it is monitoring.

Info: When using a remote control, it cannot be connected to the inverter’s Network or Remote port, it must be connected to a communications port (P1-P6) on the router.

When used in conjunction with a router, a ME-RC or ME-ARC has limited functions. The remote control, when connected to the router, acts only as a remote monitor. It monitors the port it is set up to display, turns all parallel inverter/chargers on/off, and displays METER and TECH information. If the remote control that is connected is a ME-ARC, it can be used in a remote location as a remote on/off switch, and can assist in controlling a generator that is connected to an AGS-N module using the FAVS button. The ME-ARC does not control the inverter/chargers via the CTRL button, nor can the SETUP button be used—all SETUP and CTRL features or functions must be done using the CTRL and SETUP button on the router.

Info: When the ME-ARC is connected to the router, the FAVS menu can provide access to menus that are normally locked out. The Gen Control menu—when used under the FAVS menu—is the only one that is tested and guaranteed to work. The menus that are under the CTRL and SETUP buttons are normally locked out, but may have been saved in the FAVS menu. These non-tested menus may conflict with the router settings and should not be used to set up or configure the router.

SETUP: 06 RC Setup

No setup features are allowed from the remote control; all setup must be done using the router. The remote control can be plugged into any port (P1-P6), and can monitor any port to which an inverter is connected. However, it must first be assigned to that port in order to monitor it. See Figure 9-1 for help in accessing the RC Setup menu.

Default: System (appears as the assigned port for the remote control and means the remote control will monitor the System Home port.

Range: System, Port 1 – Port 6 (shows any port activity connected to an inverter—means the remote will monitor the specific inverter on the designated port).

Note: It is recommended that the ME-RC or ME-ARC is set to monitor “System” in most installations. To assign a different port, press the SELECT knob and rotate to the desired port (P1-P6). Press the SELECT knob to save the port selection.

Figure 9-1, Accessing the RC Setup Menu
Appendix A – Router Display Abbreviations

Use the table below to identify the abbreviations that may appear on your router’s LCD display.

Table A-1, Abbreviations on Router Display

<table>
<thead>
<tr>
<th>FULL NAME</th>
<th>SHORT ABBREV. (MINI ABBREV.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorb Charging</td>
<td>Absorb</td>
</tr>
<tr>
<td>Absorbed Glass Mats</td>
<td>AGM</td>
</tr>
<tr>
<td>Accessory</td>
<td>Acc</td>
</tr>
<tr>
<td>AC Backfeed</td>
<td>Backfeed</td>
</tr>
<tr>
<td>AC In</td>
<td>AC In (ACIn)</td>
</tr>
<tr>
<td>AC Load Diversion</td>
<td>ACLD</td>
</tr>
<tr>
<td>AC Overload</td>
<td>AC OverL</td>
</tr>
<tr>
<td>Automatic Generator Start</td>
<td>AGS</td>
</tr>
<tr>
<td>Battery Monitor Kit</td>
<td>BM or BMK</td>
</tr>
<tr>
<td>Battery Temp Sensor Comp</td>
<td>BTS Comp</td>
</tr>
<tr>
<td>BMK Ready</td>
<td>BMKReady (Redy)</td>
</tr>
<tr>
<td>Breaker Tripped</td>
<td>Brk Trip</td>
</tr>
<tr>
<td>Bulk Charging</td>
<td>Bulk</td>
</tr>
<tr>
<td>Charger</td>
<td>Chg</td>
</tr>
<tr>
<td>Charger Standby</td>
<td>Chg Stby</td>
</tr>
<tr>
<td>Charging</td>
<td>Charge</td>
</tr>
<tr>
<td>Constant Current</td>
<td>CCurrent</td>
</tr>
<tr>
<td>Constant Current/Constant Voltage</td>
<td>CC/CV</td>
</tr>
<tr>
<td>Constant Voltage</td>
<td>CVoltage</td>
</tr>
<tr>
<td>Control Button</td>
<td>CTRL</td>
</tr>
<tr>
<td>Dead Battery Charge</td>
<td>DeadBatt</td>
</tr>
<tr>
<td>Equalize</td>
<td>EQ (EQ)</td>
</tr>
<tr>
<td>Equalizing</td>
<td>Equalize</td>
</tr>
<tr>
<td>External Input</td>
<td>ExtInput</td>
</tr>
<tr>
<td>Ext OFF</td>
<td>XOFF</td>
</tr>
<tr>
<td>Ext ON</td>
<td>XON</td>
</tr>
<tr>
<td>Factory Fault</td>
<td>FacFault (FacF)</td>
</tr>
<tr>
<td>Fault Amp</td>
<td>Falt Amp (F Amp)</td>
</tr>
<tr>
<td>Fault Exercise</td>
<td>Falt Exe (F Exe)</td>
</tr>
<tr>
<td>Fault Gen Run</td>
<td>FaltGnRn (FGnR)</td>
</tr>
<tr>
<td>Fault MaxRn</td>
<td>FaltMaxRn (FMxR)</td>
</tr>
<tr>
<td>Fault SOC</td>
<td>Falt SOC (FSOC)</td>
</tr>
<tr>
<td>Fault Temp</td>
<td>FaltTemp (FTmp)</td>
</tr>
<tr>
<td>Fault Test</td>
<td>FaltTest (FTst)</td>
</tr>
<tr>
<td>Fault Time Daily</td>
<td>Falt TOD (FTOD)</td>
</tr>
<tr>
<td>Fault Topoff</td>
<td>Falt Top (F Top)</td>
</tr>
<tr>
<td>Fault VDC</td>
<td>Falt VDC (F VDC)</td>
</tr>
<tr>
<td>Fault 100% SOC</td>
<td>Falt 100% (F 100)</td>
</tr>
</tbody>
</table>
Appendix A – Router Display Abbreviations

Router Display Abbreviations (Cont.)

<table>
<thead>
<tr>
<th>FULL NAME</th>
<th>SHORT ABBREV. (MINI ABBREV.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FET Overload</td>
<td>FETOverL</td>
</tr>
<tr>
<td>Field Effect Transistors</td>
<td>FETs</td>
</tr>
<tr>
<td>Float Charging</td>
<td>Float</td>
</tr>
<tr>
<td>Full Charge</td>
<td>Full Chg</td>
</tr>
<tr>
<td>Generator</td>
<td>Gen</td>
</tr>
<tr>
<td>Gen Cooldown</td>
<td>Cooldown (Cool)</td>
</tr>
<tr>
<td>Gen Off</td>
<td>Gen Off (Off)</td>
</tr>
<tr>
<td>Gen Ready</td>
<td>GenReady (Redy)</td>
</tr>
<tr>
<td>Gen Warmup</td>
<td>Warmup (Warm)</td>
</tr>
<tr>
<td>High Battery</td>
<td>HighBatt</td>
</tr>
<tr>
<td>High Batt Temp</td>
<td>HBatTemp</td>
</tr>
<tr>
<td>High Volts AC</td>
<td>High VAC</td>
</tr>
<tr>
<td>High Speed Bus</td>
<td>BusFault</td>
</tr>
<tr>
<td>Hours/Minutes/Seconds</td>
<td>Hrs or HH (H)/Min or MM (m)/Sec (s)</td>
</tr>
<tr>
<td>Internal Bridge</td>
<td>Int Brdg</td>
</tr>
<tr>
<td>Internal Charger</td>
<td>Int Chgr</td>
</tr>
<tr>
<td>Internal NTC</td>
<td>Int NTC</td>
</tr>
<tr>
<td>Internal Relay</td>
<td>IntRelay</td>
</tr>
<tr>
<td>Inverter</td>
<td>Inv</td>
</tr>
<tr>
<td>Inverter Standby</td>
<td>Inv Stby</td>
</tr>
<tr>
<td>Inverting</td>
<td>Invert</td>
</tr>
<tr>
<td>Load Support AAC</td>
<td>LS-AAC</td>
</tr>
<tr>
<td>Load Support VDC</td>
<td>LS-VDC</td>
</tr>
<tr>
<td>Low Battery</td>
<td>Low Batt</td>
</tr>
<tr>
<td>Manual Run</td>
<td>Man Run (MnRn)</td>
</tr>
<tr>
<td>No AGS Comm</td>
<td>No Comm</td>
</tr>
<tr>
<td>No Inverter Comm</td>
<td>No Comm</td>
</tr>
<tr>
<td>No Inverter Found!</td>
<td>Empty</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Overcurrent</td>
<td>Overcrnt</td>
</tr>
<tr>
<td>Overtemp</td>
<td>OverTemp</td>
</tr>
<tr>
<td>Personal Identification Number</td>
<td>PIN</td>
</tr>
<tr>
<td>Port 1-6</td>
<td>P1-P6</td>
</tr>
<tr>
<td>Port# 1 Accessory</td>
<td>P1A</td>
</tr>
<tr>
<td>Power-up Fault</td>
<td>PwrFault (PwrF)</td>
</tr>
<tr>
<td>Quiet Time</td>
<td>QuietTme (QT)</td>
</tr>
<tr>
<td>Remote Control</td>
<td>RC</td>
</tr>
<tr>
<td>Searching</td>
<td>Search</td>
</tr>
</tbody>
</table>
Router Display Abbreviations (Cont.)

<table>
<thead>
<tr>
<th>FULL NAME</th>
<th>SHORT ABBREV. (MINI ABBREV.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silent</td>
<td>Silent</td>
</tr>
<tr>
<td>SOC: ###%</td>
<td>SOC:###% (####)</td>
</tr>
<tr>
<td>StackClock Fault</td>
<td>StkClock</td>
</tr>
<tr>
<td>Stack Mode Fault</td>
<td>Stk Mode</td>
</tr>
<tr>
<td>StackPhase Fault</td>
<td>StkPhase</td>
</tr>
<tr>
<td>Start Amp</td>
<td>StrtAmp (SAmp)</td>
</tr>
<tr>
<td>Start Exercise</td>
<td>StrtExe (SExe)</td>
</tr>
<tr>
<td>Start SOC</td>
<td>StrtSOC (SSOC)</td>
</tr>
<tr>
<td>Start Temp</td>
<td>StrtTemp (STmp)</td>
</tr>
<tr>
<td>Start Test</td>
<td>StrtTest (STst)</td>
</tr>
<tr>
<td>Start Time Daily</td>
<td>StrtTOD (STOD)</td>
</tr>
<tr>
<td>Start Topoff</td>
<td>StrtToff (STop)</td>
</tr>
<tr>
<td>Start VDC</td>
<td>StrtVDC (SVDC)</td>
</tr>
<tr>
<td>Start 100% SOC</td>
<td>Strt100% (S100)</td>
</tr>
<tr>
<td>State of Charge</td>
<td>SOC</td>
</tr>
<tr>
<td>Stuck Relay</td>
<td>Stuck Ry</td>
</tr>
<tr>
<td>System</td>
<td>Sys</td>
</tr>
<tr>
<td>Temperature Sensor</td>
<td>TS</td>
</tr>
<tr>
<td>Tfmr Overtemp</td>
<td>Tfmr OT</td>
</tr>
<tr>
<td>Think’n</td>
<td>Think’n (Thnk)</td>
</tr>
<tr>
<td>Timers</td>
<td>TM</td>
</tr>
<tr>
<td>Transformer</td>
<td>Tfmer</td>
</tr>
<tr>
<td>TS Cold</td>
<td>Cold</td>
</tr>
<tr>
<td>TS Hot</td>
<td>Hot</td>
</tr>
<tr>
<td>TS Open</td>
<td>Open</td>
</tr>
<tr>
<td>TS Shorted</td>
<td>TS-S</td>
</tr>
<tr>
<td>Unknown Fault ##</td>
<td>Fault## (F##)</td>
</tr>
<tr>
<td>Unknown Mode ##</td>
<td>Mode ##</td>
</tr>
<tr>
<td>Unknown ?##?</td>
<td>Unk?##? (?##?)</td>
</tr>
<tr>
<td>Versions</td>
<td>Vers</td>
</tr>
<tr>
<td>xxxC</td>
<td>xxxC</td>
</tr>
<tr>
<td>xxxxF</td>
<td>xxxxF</td>
</tr>
<tr>
<td>###% (numerical %)</td>
<td>SOC:###% (####)</td>
</tr>
</tbody>
</table>
Appendix B – Router Feature to Inverter Compatibility

When the ME-RTR is released with new software, some of the features and functionality in the router may not be available in an inverter or networked accessory that has an earlier software level. In this case, the advanced setting is not recognized and will not function. Table B-1 lists the ME-RTR features/settings and what inverter compatibility level is required (see the “Model/Level Required” column).

2. Find the features/settings you want to use in Table B-1.
3. If your inverter compatibility level is ≥ the level required, your inverter supports the setting/feature.
4. If your inverter does not have the required compatibility level for a feature/setting you want, contact Magnum Energy for a software upgrade.

Table B-1, ME-RTR (Version 3.1) Compatibility Matrix

<table>
<thead>
<tr>
<th>Button</th>
<th>FEATURES/SETTINGS</th>
<th>Model/Level Required</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 AC In Control</td>
<td>Ctrl</td>
<td>Auto Connect</td>
<td>≥Level 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDC Connect, Time Connect, AC In – Disabled</td>
<td>≥Level 3 [1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOC Connect</td>
<td>≥Level 3 [1] [6]</td>
</tr>
<tr>
<td>02 Charger Control</td>
<td>Ctrl</td>
<td>Multi-Stage, Start Float, Start Bulk</td>
<td>≥Level 4</td>
</tr>
<tr>
<td>03 Gen Control</td>
<td>Ctrl</td>
<td>OFF, ON, AUTO</td>
<td>≥Level 1 [7]</td>
</tr>
<tr>
<td>04 RTR Aux Relay</td>
<td>Ctrl</td>
<td>Force Open, Force Closed, Auto VDC, Auto VDC (BTS Comp), Auto Fault, Auto SOC</td>
<td>≥Level 1</td>
</tr>
<tr>
<td>01 DC Meters</td>
<td>METER</td>
<td>01A DC Volts to Inv</td>
<td>Read Only display</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01B Inv/Chg DC Amps</td>
<td></td>
</tr>
<tr>
<td>02 AC Meters</td>
<td>METER</td>
<td>02A AC Output Volts</td>
<td>≥Level 4 [3]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>02B AC Output Hz</td>
<td>≥Level 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>02C System AC Amps</td>
<td>≥Level 4 [4]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>02D Inv/Chg Sys Amps</td>
<td>≥Level 4 [4]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>02E AC Load Amps</td>
<td>≥Level 4 [4]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>02F AC Input Amps</td>
<td>≥Level 4 [4]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>02G Inv/Chg AC Amps</td>
<td>≥Level 4 [4]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>02H Input Volts AC1</td>
<td>MSH Models</td>
</tr>
<tr>
<td></td>
<td></td>
<td>02I Input Volts AC2</td>
<td>MSH-RE</td>
</tr>
<tr>
<td>03 Timers</td>
<td>METER</td>
<td>03A Charge Time</td>
<td>Read Only display</td>
</tr>
<tr>
<td></td>
<td></td>
<td>03B Days Since</td>
<td>≥Level 1</td>
</tr>
<tr>
<td>04 AGS Meters</td>
<td>METER</td>
<td>04A AGS Status</td>
<td>Read Only display</td>
</tr>
<tr>
<td></td>
<td></td>
<td>04B DC Volts to AGS</td>
<td>≥Level 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>04C Gen Run Time</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B – Compatibility Matrix

<table>
<thead>
<tr>
<th>Button</th>
<th>FEATURES/SETTINGS</th>
<th>Selections/Adjustments Range</th>
<th>Model/Level Required</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>METER</td>
<td>04 AGS Meters (cont.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04D AGS Temp</td>
<td>Read Only display</td>
<td>≥Level 1</td>
<td>Read Only</td>
</tr>
<tr>
<td></td>
<td>04E Since Run Days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04F Since 100% Days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04G Gen Hour Meter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>05 BMK Meters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>05A BMK SOC</td>
<td>Read Only display</td>
<td>≥Level 1 [6]</td>
<td>Read Only</td>
</tr>
<tr>
<td></td>
<td>05B DC Volts-BMK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>05C DC Amps-BMK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>05D Amp Hours In/Out</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>05E Resettable Ahrs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>05F Total kAhrs Out</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>05G Minimum VDC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>05H Maximum VDC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>05I Days Since 100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SETUP</td>
<td>01 System Setup</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>01A System Clock</td>
<td>Time = 12:00A-11:59P</td>
<td>12:00A**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01B Screen Setup</td>
<td>Contrast = 0-100%</td>
<td>100%**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brightness = 0-100%</td>
<td>50% **</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01C Power Save</td>
<td>PowerSave= OFF, 1-60 min</td>
<td>≥Level 1</td>
<td>15 Min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Port LEDs = Auto, OFF</td>
<td></td>
<td>Auto</td>
</tr>
<tr>
<td></td>
<td>01D Temp Display</td>
<td>Fahrenheit, Celsius</td>
<td></td>
<td>Fahrenheit</td>
</tr>
<tr>
<td></td>
<td>01E Viewing Ports</td>
<td>Auto Scroll = OFF, 1-60 sec</td>
<td></td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>01F RTR Aux Relay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open Volts = 8.0-17.0*</td>
<td>≥Level 1</td>
<td>10.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Close Volts = 8.0-17.0*</td>
<td></td>
<td>14.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open Delay = 0-127 secs, 1-127 mins</td>
<td></td>
<td>10 secs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Close Delay = 0-127 secs, 1-127 mins</td>
<td></td>
<td>10 secs</td>
</tr>
<tr>
<td></td>
<td>01G Aux Relay SOC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open = 20-100%</td>
<td>≥Level 4 [6]</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Close = 20-100%</td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>02 Invert Setup</td>
<td>02A Search Watts</td>
<td>OFF, 5-50 Watts</td>
<td>≥Level 1</td>
<td>5 Watts</td>
</tr>
<tr>
<td></td>
<td>02B LBCO Setting</td>
<td>9.0-12.2* VDC</td>
<td>≥Level 2</td>
<td>10.0 VDC</td>
</tr>
<tr>
<td></td>
<td>02C AC In – Time</td>
<td>Connect=12:00A-11:45P</td>
<td>≥Level 3 [1]</td>
<td>6:00A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disconnect=12:00A-11:45P</td>
<td></td>
<td>6:00P</td>
</tr>
<tr>
<td></td>
<td>02D AC In – Volts DC</td>
<td>Connect = 9.0-15.9*</td>
<td>≥Level 3 [1]</td>
<td>11.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disconnect = 9.1-16.0*</td>
<td></td>
<td>14.1V</td>
</tr>
<tr>
<td></td>
<td>02E AC – In SOC</td>
<td>Connect = 20-99%</td>
<td>≥Level 3 [6]</td>
<td>80%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disconnect = 21-100%</td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>02F Inv Always PowerUp</td>
<td>NO, YES</td>
<td>≥Level 1</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>02G Inverter Threshold to Start Parallel</td>
<td>OFF, 30%-90%</td>
<td>MS-PAE, MS-PE</td>
<td>60%</td>
</tr>
</tbody>
</table>
Appendix B – Compatibility Matrix

<table>
<thead>
<tr>
<th>Button</th>
<th>FEATURES/SETTINGS</th>
<th>Model/Level Required</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>SETUP</td>
<td>03 Charger Setup</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Main Menu</td>
<td>Menu Heading/Item</td>
<td>Selections/Adjustments Range</td>
</tr>
<tr>
<td>03A AC Input Amps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AC/AC1 Input = 5-60A</td>
<td>≥Level 1</td>
<td>30A</td>
</tr>
<tr>
<td></td>
<td>AC2 Input = 5-60A</td>
<td></td>
<td>20A</td>
</tr>
<tr>
<td>03B Low VAC Dropout</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AC/AC1 Input = 60-100 VAC, UPS Mode</td>
<td>U.S. Models</td>
<td>80 VAC</td>
</tr>
<tr>
<td></td>
<td>AC2 Input = 60-100 VAC, UPS Mode</td>
<td>MSH-RE Models</td>
<td>70 VAC</td>
</tr>
<tr>
<td></td>
<td>AC Input = 110-190 VAC, UPS Mode</td>
<td>Export models</td>
<td>150 VAC</td>
</tr>
<tr>
<td>03C Battery Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGM1, AGM2, Flooded, GEL</td>
<td>≥Level 1</td>
<td>Flooded</td>
</tr>
<tr>
<td></td>
<td>Absorb = 12.0-16.0V*</td>
<td>≥Level 3</td>
<td>14.4V</td>
</tr>
<tr>
<td></td>
<td>Float = 12.0-16.0V*</td>
<td></td>
<td>13.2V</td>
</tr>
<tr>
<td></td>
<td>EQ Volts = 12.0-16.0V*</td>
<td></td>
<td>15.6V</td>
</tr>
<tr>
<td></td>
<td>EQ Time = 0.1-25.5Hrs</td>
<td></td>
<td>4.0 Hrs</td>
</tr>
<tr>
<td></td>
<td>Max Chg = 20-990A</td>
<td></td>
<td>200A</td>
</tr>
<tr>
<td></td>
<td>CV Chg = 12.0-16.0V*</td>
<td></td>
<td>13.8V</td>
</tr>
<tr>
<td></td>
<td>CV Chg Done Time, Amps, Hold Volts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CV Chg Done Time = 0.1-25.5 Hrs</td>
<td>≥Level 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CC/CV Max Chg Time = OFF, 0.1-25.5 Hrs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VDC Recharge = 12.0-16.0V*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CV Chg Done Amps = 0-250ADC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CC/CV Max Chg Time = OFF, 0.1-25.5 Hrs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VDC Recharge = 12.0-16.0V*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hold CV Charge Volts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03D Absorb Done</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time, Amps, SOC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rate = 0-100%</td>
<td>≥Level 3</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>Time = OFF, 0.1-25.5 Hrs</td>
<td>≥Level 4</td>
<td>12.0 Hrs</td>
</tr>
<tr>
<td>03E Max Charge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multi-Stage, Float, Silent</td>
<td>≥Level 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multi-Stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Float</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silent</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VDC Rebulk = 12.0-16.0V*</td>
<td>≥Level 4</td>
<td>12.0V</td>
</tr>
<tr>
<td>03G Days to EQ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OFF, 1-255 Days</td>
<td>≥Level 1</td>
<td>OFF</td>
</tr>
</tbody>
</table>
Appendix B – Compatibility Matrix

<table>
<thead>
<tr>
<th>Button</th>
<th>FEATURES/SETTINGS</th>
<th>Selections/Adjustments Range</th>
<th>Model/Level Required</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Main Menu</td>
<td>Menu Heading/Item</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04 AGS</td>
<td>SETUP</td>
<td>OFF, Start Volts= 9.0-15.9*</td>
<td>≥Level 1</td>
<td>11.5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Start Delay= 0-127s, 1-127m</td>
<td></td>
<td>120 Secs</td>
</tr>
<tr>
<td></td>
<td>04A Gen Run DC Volts</td>
<td>Stop Volts= 9.1-16.0*, Float</td>
<td></td>
<td>14.4V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stop Delay= 0-127s, 1-127m</td>
<td></td>
<td>120 Secs</td>
</tr>
<tr>
<td></td>
<td>04B Gen Run Time</td>
<td>OFF, Start = 12:00A-11:45P</td>
<td>≥Level 1</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stop Daily = 12:00A-11:45P</td>
<td></td>
<td>12:00A</td>
</tr>
<tr>
<td></td>
<td>04C Gen Run AC Amps</td>
<td>Start AC Amps = OFF, 5-60A</td>
<td>≥Level 4</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stop AC Amps = 4-59A</td>
<td></td>
<td>4A</td>
</tr>
<tr>
<td></td>
<td>04D Gen Run SOC</td>
<td>OFF, Start SOC = 20-99%</td>
<td>≥Level 1 [6]</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stop SOC = 21-100%</td>
<td></td>
<td>90%</td>
</tr>
<tr>
<td></td>
<td>04E Gen Run Temp</td>
<td>Start = OFF, ExtInput, 65-95F (18-35C)</td>
<td>≥Level 1</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time = 0.5-25.5 Hrs</td>
<td></td>
<td>65F/2 Hrs</td>
</tr>
<tr>
<td></td>
<td>04F Max Gen Run Time</td>
<td>OFF, 0.1-25.5 Hrs</td>
<td>≥Level 1</td>
<td>12 Hrs</td>
</tr>
<tr>
<td></td>
<td>04G Gen Quiet Time</td>
<td>OFF, Begin = 12:00A-11:45P</td>
<td>≥Level 1</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>End Time = 12:00A-11:45P</td>
<td></td>
<td>10:00A</td>
</tr>
<tr>
<td></td>
<td>04H Gen Exercise</td>
<td>OFF, Days = 1-255 days</td>
<td>≥Level 1</td>
<td>8:00A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Start Time = 12:00A-11:45P</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04I Gen No-Load Time</td>
<td>Run Time = 0.1-25.5 Hrs</td>
<td>≥Level 1</td>
<td>1.0 Hrs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Warm-up = 0-127s, 1-127m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04J Gen 100% SOC</td>
<td>OFF, Days = 1-255</td>
<td>≥Level 1 [6]</td>
<td>OFF</td>
</tr>
<tr>
<td>05 BMK</td>
<td>Setup</td>
<td>Time = 12:00A-11:45P</td>
<td></td>
<td>8:00A</td>
</tr>
<tr>
<td>05A Charge Efficiency</td>
<td>Auto, 50-99%</td>
<td>≥Level 1 [6]</td>
<td></td>
<td>Auto</td>
</tr>
<tr>
<td>05B Battery AH Size</td>
<td>200-2500 AH</td>
<td></td>
<td></td>
<td>400 AH</td>
</tr>
<tr>
<td>06 Remote Control</td>
<td>06A Remote Control</td>
<td>System, Port 1 – Port 6</td>
<td>≥Level 1</td>
<td>System</td>
</tr>
</tbody>
</table>

* – 12-volt values shown; multiply 12-volt values x2 for 24v systems, and x4 for 48v systems.

** – These settings return to the factory default setting when power to the router is removed.

[2] AC Couple mode activates when Battery Type = Custom w/ MS-PAE Rev ≥4.1 or MS/MS-PE Rev ≥5.0.

[3] AC output volts only accurate when connected to MS, MS-PAE, MS-PE or MSH Series models.

[4] AC amps displays only appear when connected to MS-PAE, MS-PE, or MSH Series models.

[5] Level 2 and 3 inverters can be used, but: Level 2 inverters are limited from 1 to 4.5 hrs, Level 3 inverters must be ≥Rev4.1 and are limited from 1 to 6.5 hrs, Level 3 inverters must be ≥Rev4.1 (and MMS Rev 1.5) and are limited from 1.5 to 6.5 hrs.

[6] BM/SOC features require the ME-BMK (Battery Monitor Kit) to be installed.

[7] ME-AGS-N Rev 5.2 or higher required to manually turn the generator “ON” with the router.
Appendix C – Using the Router with Non-stacked Inverters

C-1 Using the Router to Control Multiple Unconnected Inverters

The router can be used to control multiple Magnum inverters—under certain conditions—that are not connected in parallel (i.e., non-stacked). Each connected inverter must be the same model (i.e., MS4024 and another MS4024), each inverter must be connected to the same battery bank, and because the output of all the inverters are not in-phase with each other, the AC outputs must be isolated from each other.

The behavior of unstacked units are as follows:

- Unstacked units that are inverting:
 1. Pressing the Inverter On/Off button:
 a) If all units are off, turns them all on.
 b) If any unit is on and another one is off, turns them all off.
 2. Units will come out of Search mode (if enabled) separately, based on the load sensed by each inverter.

- Unstacked units that are charging:
 1. The lead charger unit is defined as the unit charging and connected to the lowest port number.
 2. All non-lead charger units are forced to the Charge mode of the lead charger.

When using non-stacked units, the router applies the same inverter and charger settings to each inverter. As long as all the inverters are in the same mode either charging or inverting, then the inverters will operate together normally. If there is an instance that some inverters connected to the router are charging and others are inverting (such as when an input breaker has tripped), or if the AC is connected to one unit before connecting to another unit (non-synced AC in)—then the features listed below will not work properly.

- System meters (if some units are inverting and others are charging)
- System CHG LED (if lead unit does not have AC in and other units are connected to AC input)
- System Power LED (follows the lead inverter)
- Absorb Done Amps (when some units inverting, others are charging, and there is no BMK installed)
- Absorb Done Time (could get confused and go too long with non-synced AC in)
- Max Charge to battery (when some units inverting and others are charging)
- Batteries may stay in EQ charge longer than desired (can be fooled with non-synced AC in)
- AC In Time/Volts DC/SOC will be inaccurate (when lead unit does not have AC in)
- Remote Monitoring (when some units inverting and others are charging)
- AGS Start on AC Amps (when some units inverting and others are charging)
- AGS Gen Run DC Volts Stop on Float (when lead unit does not have AC in)
Appendix D – Using AC Coupling

Appendix D – Using the ME-RTR in an AC Coupled Application

This appendix outlines specific settings that need to be adjusted when the router is connected to Magnum inverters that are used in an AC coupled system.

D-1 What is an AC Coupled System

Many homeowners utilize renewable energy (e.g., PV, wind, etc.,) by installing high efficiency, battery-less, grid-tie inverter systems to offset their power consumption from the utility grid. However, during a utility power outage, the grid-tie inverter is required to shut down. This can cause considerable frustration as the homeowner realizes that the critical loads in the home (e.g., refrigerator, lights, water pump, etc.,) are no longer powered, and all the energy produced by the renewable energy source is being wasted while the utility power is out.

An AC coupled system is one where all the energy sources and loads are connected directly to the AC side. Installing a bi-directional battery-based inverter (such as Magnum’s MS-PAE Series) allows the existing battery-less, grid-tie inverter to operate; and therefore, to continue to utilize the renewable energy to power the home’s critical loads during a power outage—all from the AC side.

However, in an AC coupled system—during a utility power interruption—the main panel loads are no longer connected and the utility grid is not available to export any excess power that is generated. This means there may be more power on the AC side than the critical loads can consume, causing current to be pushed back thru the output of the Magnum inverter into the battery bank. Since this is not the normal path for the Magnum inverter to sense incoming current, it is not able to control the battery voltage or regulate the current, providing the possibility that the battery voltage will rise and be damaged. If the battery voltage is allowed to rise high enough, a High Battery Voltage fault on the Magnum inverter will occur, causing it to turn off; which in turn shuts down the entire system (i.e., critical loads and grid-tie inverter turn off). To prevent this from happening, configure the router to work in an AC coupled system to help regulate the battery bank.

D-2 Configure the Router to use in an AC Coupled System

The router should be configured to work optimally in an AC coupled system, as described below:

1. Enable AC Coupled Support mode to help regulate the battery voltage: Go to the 03C Battery Type menu (under SETUP: 03 Charger Setup) and select Custom.

 Info: AC Coupled Support mode is a control method that causes the inverter output frequency to increase, causing the grid-tie inverter to cease producing power to avoid overcharging the system battery. AC Coupled Support mode is available in MS-PAE Series inverter/chargers (≥Ver 4.1) and is enabled when the battery type is set to Custom. Once enabled—when the battery voltage increases 2 volts (24-volt units) or 4 volts (48-volt units) above the Absorb Voltage setting—the inverter output frequency changes to 60.6Hz. The frequency returns to 60.0Hz when the battery voltage falls 2 volts (24-volt units) or 4 volts (48-volt units) below the Absorb Voltage setting, allowing the grid-tie inverter to reconnect. **Note:** Because AC Coupled Support mode activates at a high voltage level, it should only be used as a secondary (i.e., back-up) method to regulate the battery voltage.

 Info: After selecting Custom under the 03C Battery Type menu, ensure the charge voltage settings (i.e., Absorb Volts, Float Volts, and EQ Volts)—which display only if Custom has been selected—are configured for your specific batteries.

2. Turn off the Search mode feature: Go to the 02A Search Watts Sensitivity menu (under SETUP: 01 Inverter Setup) and set it to OFF.

3. Turn off Parallel Threshold: Go to the 02G Inverter Threshold to Start Parallel menu (under SETUP: 01 Inverter Setup) and set it to OFF.

4. Ensure the inverter is set to automatically accept grid power when available: Go to the 01 AC In Control menu (under CTRL: 01 AC In Control) and set to Auto Connect.

 Note: The Aux Relay in the router can also be used to connect and control a DC-controlled relay to help regulate the battery voltage. See Section 2.9 for information on wiring the Aux Relay, and CTRL: 04 RTR Aux Relay for information on configuring the Aux Relay.
Appendix E – Warranty and Service Info

E-1 Limited Warranty

Magnum Energy, Inc., warrants the ME-RTR to be free from defects in material and workmanship that result in product failure during normal usage, according to the following terms and conditions:

1. The limited warranty for the product extends for a maximum of 12 months beginning from the product’s original date of purchase.

 Note: You can extend the normal one-year warranty on the ME-RTR to five years simply by ordering it with and installing it on one of Magnum’s MP or MMP panel systems. To be eligible for the 5-year warranty extension, a proof-of-purchase is required at the time of repair/service showing that the ME-RTR and the MP or MMP panel system were purchased at the same time.

2. The limited warranty extends to the original purchaser of the product and is not assignable or transferable to any subsequent purchaser.

3. During the limited warranty period, Magnum Energy will repair, or replace at Magnum Energy’s option, any defective parts, or any parts that will not properly operate for their intended use with factory new or remanufactured replacement items if such repair or replacement is needed because of product malfunction or failure during normal usage. The limited warranty does not cover defects in appearance—cosmetic or decorative—or any structural or non-operative parts. Magnum Energy’s limit of liability under the limited warranty shall be the actual cash value of the product at the time the original purchaser returns the product for repair—determined by the price paid by the original purchaser. Magnum Energy shall not be liable for any other losses or damages.

4. Upon request from Magnum Energy, the original purchaser must prove the product’s original date of purchase by a dated bill of sale, itemized receipt.

5. The original purchaser shall return the product prepaid to Magnum Energy in Everett, WA. After the completion of service under this limited warranty, Magnum Energy will return the product prepaid to the original purchaser via a Magnum-selected non-expedited surface freight within the contiguous United States and Canada; this excludes Alaska and Hawaii.

6. If Magnum repairs or replaces a product, its warranty continues for the remaining portion of the original warranty period or 90 days from the date of the return shipment to the original purchaser, whichever is greater. All replaced products and parts removed from repaired products become the property of Magnum.

7. This limited warranty is voided if:
 - the product has been modified without authorization;
 - the serial number (if serialized) has been altered or removed;
 - the product has been damaged through abuse, neglect, accident, high voltage or corrosion;
 - the product was not installed and operated according to the owner’s manual.

E-2 How to Receive Repair Service

If your product requires warranty service or repair, contact either:

1. An authorized service center, as listed on the Magnum Energy website at: http://magnumenergy.com/authorized-service-centers/, or

 Email: warranty@magnumenergy.com

If returning your product directly to Magnum Energy for repair, you must:

 • Return the unit in the original, or equivalent, shipping container.

 Note: Damage from shipping is not covered under warranty, ensure the unit is properly packaged.
 • Receive a Return Materials Authorization (RMA) number from the factory prior to the return of the product to Magnum Energy for repair.
 • Place RMA numbers clearly on the shipping container or on the packing slip.

BEFORE RETURNING ANY PRODUCT, A RETURN MATERIAL AUTHORIZATION (RMA) NUMBER IS REQUIRED
Appendix F – Index

Index

A
Absorb Done, 20, 36, 39, 46, 50, 58, 59, 78, 103, 119
Amps, 37, 39, 78, 119, 121
SOC, 28, 37, 39, 50, 78, 89, 119
Time, 36, 39, 50, 80, 119, 121
Absorb Volts, 35-36, 50, 80, 122
Accessory setup, 41
AC Coupling, 122
AC In Control, 14-15, 26, 47, 54, 57, 62, 76, 91, 117
AC In – Disabled, 15, 47, 62, 117
AC In – SOC, 15, 26, 27, 28, 49, 63, 118
AC In – Time, 14, 15, 23, 27, 49, 63, 118
AC In – Volts DC, 15, 27-28, 49, 63, 118
AC Input Amps, 19, 30-31, 48, 50, 61, 74, 117, 119
AC Load Amps, 19, 48, 117
AC Meters, 18, 22, 48, 117
AC Output Volts, 18, 22, 48, 117
AC Output Hz, 18, 22, 48, 117
All-port menus, 22, 48, 49-53, 96, 110
Always Power-up, 29, 49, 118
Amps Delay Time, See Start Delay
Auto Connect, 14-15, 47, 76, 90-91, 117, 122
Auto Fault, 17, 47, 117
Autostart, 16, 76, 78-79, 81-95, 99-100, 103-104
Autostop, 16, 76, 78-79, 81-95, 99-100, 103-104
Auto SOC, 17, 25, 47, 117
Auto VDC, 17, 24-25, 47, 117
Auto VDC (BTS Comp), 17, 25, 47, 117
Auxiliary (Aux) Relay, 2, 11, 24-25, 47, 49, 54, 117, 118, 122

B
Battery type, 15-16, 20, 32, 34-36, 38, 39, 41, 50, 58-59, 60, 61, 62, 119, 122
Buttons, See Menus
ON/OFF CHARGER, 1, 54, 55, 58, 59, 72
ON/OFF INVERTER, ii, 1, 54, 55, 64, 71

Cables,
RJ45 Parallel Stack Cables, 3, 6, 9, 10
Communication, 6, 8-9, 73, 111
Charge Time, 20, 33-34, 48, 59, 62, 117
Charger Control, 14-15, 20, 47, 55, 57, 117

C (Cont.)
Charger Standby, 20, 36, 55, 58, 59, 61, 72
Close SOC, 25, 118
Comm LEDs, 1
CTRL button, 2, 14, 15, 16, 47, 54, 92, 95, 113
CV Charge Done Amps, 33-34, 50
CV Charge Done Time, 33-34, 50
CV Chg Volts, 33, 34-35

D
DC Meters, 18, 22, 48, 117
DC Volts to Inverter, 18, 22, 48, 93, 117
DC Volts to Rebulk, 41, 50, 61
DC Volts to Recharge, 33, 34, 35, 61
Default settings, 46, 51, 54, 101

E
Equalization, 20, 35-36, 38, 55, 59-60
EQ Time, 36, 50, 119
EQ Volts, 36, 50, 119, 122
External Control, 45, 84

F
Faults, 43, 90, 92, 100, 102
AGS, 43-44, 51, 77, 100-101, 102-104
BMK, 83, 89, 111, 112
INV/CHG, 42, 51, 64-71
Fault History, 2, 23, 43-44, 51, 67, 96
Fault statuses, 100-101, 111
Final Charge Stage, 15, 36, 37, 39-41, 50, 60, 61, 62, 119
Float, 15, 39, 50, 58, 59, 62, 119, See also Float mode
Multi-Stage, 15-16, 39-40, 50, 60, 119, See also Multi-Stage
Silent, 15, 33-34, 41, 50, 61, 119, See also Silent mode
Float mode, also Float Charge, 15, 39, 41, 59, 72, 78, 79, 80
Float Volts, 35, 50, 122
Flush mounting, 7
Force Closed, 17, 47, 117
Force Open, 17, 47, 117
Gen Control, 14, 16, 47, 54, 75, 77, 84, 85, 90, 91, 93, 94, 95, 96, 99, 104, 113, 117
Gen Exercise, 23, 77, 87-88, 98, 100, 102, 120
Gen No Load Time, 77, 88, 98, 99, 120
Gen Quiet Time, 23, 77, 85, 98, 100, 104, 120
Gen Run AC Amps, 77, 78, 81-82, 97, 100, 102, 103, 120

Appendix F – Index

G (Cont.)
Gen Run DC Volts, 16, 77, 78, 79-80, 85, 86, 91, 95, 97, 103, 120
Gen Run SOC, 77, 78, 82-83, 85, 86, 97, 100, 103, 120
Gen Run Temp, 24, 77, 78, 83-84, 93, 97, 100, 103, 120
Gen Run Time, 23, 77, 78, 81, 83, 85, 93, 96, 97, 100, 103, 117, 120
Gen 100% SOC, 77, 83, 89-90, 94, 98, 100, 104, 120

H
Hold CV Chg Volts, 15, 33, 35, 50

I
Input Volts AC1, 20, 22, 48, 117
Input Volts AC2, 20, 22, 48, 117
Installation, 3, 4-5, 6-8, 9-10, 12
Inverter Compatibility, 36, 117-120
Inverter Mode, 19, 21, 26, 31, 55, 56, 81
Inv/Chg AC Amps, 19, 48, 117
Inv/Chg DC Amps, 18, 22, 33, 34, 37, 48, 61, 117
Inv/Chg Sys Amps, 19, 22, 48, 117

L
LCD Display, 1, 12, 53, 72
LED Indicators, See Status LEDs
Low Battery Cut Out (LBCO), 26, 49, 61, 67, 79, 118
Low VAC Dropout, 14, 31-32, 50, 57, 119

M
Master inverter, 8, 9, 29-30, 54, 56
Max Charge: Rate, 38, 50, 58, 74, 119
Max Charge: Time, 20, 34, 37, 38-39, 58, 59, 62, 119
Max Chg Amps, 32, 33, 50, 119
Max CC/CV Charge Time, 20, 33, 35, 50, 59, 119
Max Gen Run Time, 16, 77, 80, 82, 84, 85, 89, 91, 93, 97, 100, 103, 120
Menus, 2, 12, 13, 14-17, 18-20, 22, 23-45, 47-52, 79-95, 96-98, 117-120
CTRL, 2, 11, 14-17, 47, 117
maps, 47-52, 96-98, 109-110
METER, 2, 18-20, 22, 48, 92-94, 96, 108-109, 110
PORT, 2, 13, 47
SETUP, 2, 12, 23-41, 49-50, 78-90, 97-98, 105-106
Show all, 14, 41, 45, 51, 54, 75, 76
TECH, 2, 42-45, 51
METER button, 2, 12, 18, 22, 54, 78

M (Cont.)
Mounting, 5, 7-8
Multi-Stage, 15, 16, 39-40, 47, 50, 60, 117, 119

N
Network port, 4, 6, 9, 13, 73, 92, 99
No BMK Present, 111

O
Operational statuses, 99, 111
ON/OFF buttons, 1, 54
charger, 1, 54, 55, 58, 59, 72
inverter, ii, 1, 55, 64, 71
Open SOC, 17, 25, 118

P
Parallel threshold, 29-30, 122
PIN, 23, 44-45, 51
PORT button, 2, 13, 47, 54, 105
Port-specific menus, 22, 42, 48, 51, 96
Power Save, 24, 49, 72, 73, 118
Power-up routine, 12, 118

Q
Quiet Time, 23, 77, 85-86, 98, 99, 100, 104, 120
Quiet Time Topoff, 77, 85-86, 120

R
Refresh LCD Display, 54, 73
Relay, See Auxiliary Relay
Relay Terminal Block, 11
Remote,
cable, 3, 4, 6, 7, 11, 67, 81
correlations, 8, 42, 47, 76, 113, 120
port, 4, 6, 9, 67, 73, 83, 84, 113
temp sensor, 83, 93, 103
Rotary SELECT knob, 1, 12, 24, 43
Router Cover, 7
Run Time, 16, 23, 77, 78, 80, 81, 82, 83, 84, 85, 89, 93, 97, 98, 103, 117, 120

S
Search Watts, 25-26, 29, 49, 57, 72, 74, 118
SELECT knob, See Rotary SELECT knob
Self-test, See Power-up routine
Service Information, 123
SETUP Button, 2, 13, 23, 41, 49-50, 97-98, 113
Silent mode, 15, 20, 40, 61, 72, See also Final Charge Stage, Silent
Slave inverter, 8, 29-30, 47, 54
SOC Connect, 15, 47, 49, 63, 117, 118
Standby Mode, 18, 19, 21, 31, 54, 56, 72, 94
Start AC Amps, 81-82, 97, 120
Appendix F – Index

S (Cont.)
Start Bulk, 15, 16, 47, 74, 83, 90, 117
Start Daily, 77, 81, 97
Start Delay, 79, 81, 82, 97, 120
Start Float, 15, 20, 47, 117
Start Gen Days, 77, 87, 88, 89, 98
Start SOC, 77, 82, 83, 97, 100, 120
Start statuses, 100
Start Temp, 77, 83, 84, 93, 97, 100, 101, 103
Start Volts, 77, 79, 80, 97, 120
Statuses, See Fault statuses, Operational statuses, and Start statuses AGS status, 99, 100-101, 108, 111
Status LEDs, 1, 55, 72, 73
Stop AC Amps, 81-82, 97, 103, 120
Stop Daily, 77, 81, 97, 120
Stop Delay, 77, 80, 81, 82, 95, 97, 120
Stop SOC, 77, 82, 83, 97, 103, 120
Stop Volts, 16, 77, 78, 80, 85, 95, 97, 120
Surface mounting, 8
System AC Amps, 19, 22, 48, 81, 117
System Clock, 12, 23, 49, 118
System Home, 12, 17, 18, 42, 47, 48, 55, 78, 92, 97, 105, 108
T
TECH Button, 2, 23, 24, 42-45, 51
Temp Display, 24, 42, 49, 83, 84, 94, 118
Temperatures, 24, 42, 43, 51, 66
Time Connect, 14, 15, 47, 49, 63, 117, 118
Timers, 20, 22, 48, 96, 110, 117
U
UPS mode, 31-32, 50, 119
V
VDC Connect, 15, 47, 63, 117
VDC Delay Times, See Start Delay & Stop Delay
Versions, 43, 76-77
Viewing Ports, 24, 49, 118
W
Warranty, 123
Wiring,
 Aux Relay, 2, 11